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Lecture 3: Random Walks

Lecturer: Prahladh Harsha Scribe: David Arthur

3.1 Introduction

Consider an undirected graph G. A random walk of length l starting at the vertex u is a
sequence of vertices u = v0, v1, v2, · · · , vl, where each vi is chosen to be a random neighbor
of vi−1 for all i > 0. One considers the distribution of vi for i ≤ l.

Intuitively, a random walk can be thought of as choosing a globally random vertex on a
graph using only local choices. This is something that people actually do in practice. For
example, one might shuffle a deck of cards by repeatedly moving the top card to a random
position in the deck. We can model all orderings of the deck as the vertices of a graph with
edges corresponding to the operation described above. This process of repeatedly moving
the top card can then be thought of as a random walk that provides a more convenient way
of shuffling a deck than explicitly choosing 1 of 52! possible orderings.

Traditionally, random walks were considered on infinite graphs, and the following result
is typical of what was studied.

Theorem 3.1 (Polya, 1921). Consider a random walk on an infinite D-dimensional grid.
If D = 2, then with probability 1, the walk returns to the starting point an infinite number
of times. If D > 2, then with probability 1, the walk returns to the starting point only a
finite number of times.

For the purpose of this lecture, we will consider random walks on finite undirected graphs
and even more specifically, d-regular undirected graphs. Refer [Lov] for an excellent survey
on Random Walks on Graphs.

Several questions will motivate this lecture. Let π0 = π be the starting distribution
on the graph G (mostly, we will consider cases when π is concentrated on a single vertex).
Let πi denote the probability distribution of vi for a random walk beginning at the starting
distribution π0. Since we are interested in the ability of random walks to generate a globally
random vertex, it is natural to consider πi as i gets large.

Question 3.2. For which π0, does πi converge to some stationary distribution as i ap-
proaches infinity? What is the stationary distribution that it converge to?

If we let A = A(G) denote the normalized adjacency matrix of G, then it is easy to
check that πi+1 = Aπi for all i. Thus, a given distribution x is a stationary distribution
for some starting distribution π0 only if x = Ax. This is equivalent to stating x is an
eigenvector of A with corresponding eigenvalue 1. As noted in previously lectures, the
uniform distribution u = ( 1

n , 1
n , . . . , 1

n) has this property, but there could be other possible
stationary distributions as well. If the graph is disconnected, then there exist multiple
(independent) eigenvectors with eigenvalue 1. In fact, one can show the following.
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Lemma 3.3. The multiplicity of the largest eigenvalue (i.e.,. 1) in A(G) is equal to the
number of connected components in G.

In particular, if G is connected, the only possible stationary distribution is u. Thus, the
stationary distribution (if it exists) is independent of the starting distribution π0. This
largely answers the second part of Question 1.

Before answering the first part of Question 1, we consider a related question.

Question 3.4. If πi converges to a stationary distribution, how fast does it converge?

We can also recast this in terms of mixing time, described below.

Definition 3.5 (Mixing Time). The “mixing time” of a graph G with n vertices is the
minimum l such that for all starting distributions π

‖Alπ − u‖∞ <
1
2n

. (1)

We will define the ‖·‖∞-norm shortly.
The 1

2π is largely arbitrary, but this value will prove convenient. If we take the mixing
time to be infinity for graphs where no l satisfies (1), answering our remaining questions is
equivalent to understanding mixing time.

Finally, we present two concepts related to mixing time, which are interesting in their
own right.

Definition 3.6. (Hitting Time) For a graph G, let H(u, v) denote the expected number of
steps a random walk beginning at u must take before reaching v. Define the “hitting time”
of G by H(G) = maxu,v H(u, v).

Definition 3.7. (Cover Time) For a graph G, let Cu denote the expected number of steps
a random walk beginning at u must take before reaching every other vertex at least once.
Define the “cover time” of G by C(G) = maxu Cu.

It easily follows from the definitions that H(G) ≤ C(G) ≤ n·H(G). The latter inequality
can be tightened (using the coupon-collectors’ problem) to show that C(G) ≤ O(log n) ·
H(G).

3.2 Bounding the Mixing Time

As discussed above, the distribution of random walks on disconnected graphs need never
converge to u. Bipartite graphs are similarly problematic. Specifically, if a random walk
begins at a vertex in one part, it will always be in that part after an even number of steps,
and it will always be in the other part after an odd number of steps. Thus, πl can never
converge to u on a bipartite graph.

As with Lemma 3.3, we can characterize this failure case in terms of eigenvalues of A.

Lemma 3.8. G is bipartite iff -1 is an eigenvalue of A(G).
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For example, if G is bipartite, consider the vector v with a value of 1 at all vertices in one
part and a value of -1 at all other vertices. One can check this is an eigenvector of A(G)
with eigenvalue -1.

Now, fix a graph G with n vertices and consider the eigenvalues λ1, λ2, · · · , λn of A(G).
Without loss of generality we may assume λ1 = 1 and |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Furthermore,
let λ = |λ2|. By Lemmas 3.3 and 3.8, we know λ = 1 iff G is either bipartite or disconnected.
Therefore, G has infinite mixing time if λ = 1. We now show that conversely, if λ < 1 then
G has finite mixing time.

Theorem 3.9. If G is a connected, d-regular, non-bipartite graph on n vertices, then λ < 1
and G has mixing time O

(
log n
1−λ

)
.

We review the l1, l2 and l∞ norms before proceeding with the proof.

Definition 3.10. If v = (v1, v2, · · · , vm) is an arbitrary vector, define

‖v‖∞ = max
i

|vi|,

‖v‖ = ‖v‖2 =
√∑

i

v2
i , and

‖v‖1 =
∑

i

|vi|.

Fact 3.11. ‖v‖∞ ≤ ‖v‖ ≤ ‖v‖1 ≤
√

n ‖v‖.

The first two inequalities here can easily be verified and the third follows from the Cauchy-
Schwarz inequality. Furthermore, these are all norms, which implies that they satisfy the
triangle inequality.
Proof of Theorem 3.9: Note that A(G) is a real, symmetric matrix, which implies that
it has n orthonormal eigenvectors u = v1, v2, · · · , vn. Let π denote any (starting) probability
distribution on the vertices of G. Then, we can decompose π uniquely as

∑n
i=1 πi where πi

is a constant multiple of vi. Furthermore, as discussed in the previous lecture, the fact that
π is a probability distribution guarantees π1 = u. Now,

‖Aπ − u‖2 = ‖Au + Aπ2 + Aπ3 + · · ·+ Aπn − u‖2

= ‖λ2π2 + λ3π3 + · · ·+ λnπn‖2 since Au = u

= λ2
2‖π2‖2 + λ2

3‖π3‖2 + · · ·+ λ2
n‖πn‖2 by the Pythagorean theorem

≤ λ2
(
‖π2‖2 + ‖π3‖2 + . . . + ‖πn‖2

)
= λ2‖π2 + π3 + · · ·+ πn‖2 again by the Pythagorean theorem
= λ2‖π − u‖2.

Thus, each step of the random walk decreases the l2-distance of the distribution on the
vertices to the uniform distance by a factor of at least λ. Therefore, ‖Alπ−u‖ ≤ λl‖π−u‖
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for all l ≥ 0. It follows that

‖Alπ − u‖∞ ≤ ‖Alπ − u‖
≤ λl‖π − u‖
< λl‖π‖ since π − u and u are orthogonal
≤ λl‖π‖1

= λl.

It follows that ‖Alπ−u‖∞ < 1
2n when l = O

(
log n

log 1
λ

)
≈ O

(
log n
1−λ

)
. To see this last step, note

that log(1 + x) = 1− 1
1+x + O

(
1

(1+x)2

)
by taking the Taylor expansion of both sides.

3.2.1 Bounding the Spectral Gap 1− λ

Since Theorem 3.9 depends so heavily on 1− λ, it is natural to try to bound this quantity
for various graphs G. We have already seen that 1 − λ = Ω(1) for expanders. We now
consider its value for other graphs.

Theorem 3.12. If G is a connected, d-regular, non-bipartite graph on n vertices, then
1− λ ≥ 1

dn2 .

We will prove the result this theorem only for the case where G has only non-negative
eigenvalues.

Proof. As discussed in the previous lecture, we can obtain the following characterization of
the spectral gap.

λ = max
x⊥u,‖x‖=1

〈Ax, x〉 since G has only non-negative eigen values

= max
x⊥u,‖x‖=1

1
d

∑
(u,v)∈E

2xuxv

= max
x⊥u,‖x‖=1

1
d

∑
(u,v)∈E

(
x2

u + x2
v − (xu − xv)2

)
= max

x⊥u,‖x‖=1

1
d

∑
(u,v)∈E

(x2
u + x2

v − (xu − xv)2

= max
x⊥u,‖x‖=1

1
d

d · x2
u −

∑
(u,v)∈E

(xu − xv)2


Hence, the spectral gap 1− λ is given by

1− λ = min
x⊥u,‖x‖=1

1
d

∑
(u,v)∈E

(xu − xv)2.

Then there exists x with x ⊥ u and ‖x‖ = 1 so that 1 − λ = 1
d

∑
(u,v)∈E(xu − xv)2.

Since ‖x‖ = 1, there exists v′ for which |xv′ | ≥ 1√
n
. However, since x ⊥ u, we know
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∑
xv = 0, and hence there exists v′′ for which xv′ and xv′′ have different signs. It follows

that |xv′ − xv′′ | ≥ 1√
n
.

Now, G is connected so there exists some shortest path v0(= v′), v1, · · · , vk(= v′′) from
v′ to v′′. The triangle inequality now implies that

k−1∑
i=0

|xvi − xvi+1 | ≥ |xv0 − xvk
| ≥ 1√

n
.

Therefore,

1− λ =
1
d

∑
(u,v)∈E

(xu − xv)2

≥ 1
d

k−1∑
i=0

(xvi − xvi+1)
2

≥ 1
dk

(
k−1∑
i=0

|xvi − xvi+1 |

)2

by Fact 3.11

≥ 1
dkn

≥ 1
dn2

.

As mentioned earlier, our proof only applies if G has no negative eigenvalues. In the general
case, one can apply similar analysis to G2 to bound 1 − λ2. This gives us a weaker bound
1 − λ2 ≥ 1

d2n2 and hence 1 − λ ≥ 1
poly(n,d) . In fact the same bound of 1

dn2 can be obtained
for the general case using a tighter analysis.

Note that Theorems 3.9 and 3.12 imply the mixing time of any d-regular, connected,
non-bipartite graph on n vertices is O(dn2 log n).

3.2.2 A Combinatorial Notion of Mixing

So far we have related the mixing time to the spectral gap 1− λ. There is a combinatorial
parameter of the graph that relates more directly to the mixing time. Suppose G is made up
of two cliques joined by just a few edges. This creates a bottleneck that should intuitively
limit the mixing time of G. To characterize this, one defines the following. For any set of
vertices S, let S denote V (G)−S, and let |E(S, S)| denote the number of edges between S
and S. Then, define

Φ(S) =
|E(S, S)|

|S|
, and

Φ(G) = min
S:|S|≤n

2

Φ(S).

Φ(G) is called the edge-expansion of the graph G. Φ(G) has a direct relation to the mixing
time. The edge expansion Φ(G) is related to the spectral gap as follows:

Theorem 3.13. Let G be a d-regular graph. Then,

d(1− λ)
2

≤ Φ(G) ≤ d
√

2(1− λ).
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3.3 Applications

3.3.1 Undirected s-t Connectivity

Let G be a d-regular, connected, non-bipartite graph with n vertices and mixing time l.
Consider a random walk beginning at some vertex s. Then for any vertex t and any integer
l′ ≥ l, we know that

Prob
[
Random walk is at vertex t after l′ steps

]
=
(
Al′π

)
t
≥ 1

n
− 1

2n
=

1
2n

.

Therefore, a random walk of length 2nl′ will reach t with constant probability. We know
that the mixing time for a d-regular connected bipartite graph is O(dn2 log n). This suggests
an algorithm for s-t connectivity. Take a random walk of length Θ(dn3 log n) starting at s.
If the walk reaches t, then s and t are connected. Otherwise, s and t are disconnected with
high probability. Note this runs in polynomial time and uses only log n space to track the
current vertex.

Now, as stated, our argument relies on G being d-regular, connected and and non-
bipartite to find a path from s to t. We can remove these assumptions as follows.

1. (Connected) Restrict to the connected component of G containing s.

2. (Bipartite) Add a self loop at each vertex. This does not affect whether s and t are
connected and it causes the graph to be no longer bipartite.

3. (Regular) Each vertex of degree D > 3 can be replaced by D vertices of degree 3 in
a cycle to make the graph 3-regular. Also, non-regular graphs do in fact mix already
and the same algorithm works. We have not shown this, however.

We summarize all this as follows.

Theorem 3.14 (Undirected Connectivity is in RL, [AKL+]). There is a polynomial time,
log space Monte Carlo algorithm for s-t connectivity in undirected graphs.

Recently, Reingold obtained a deterministic algorithm for undirected s-t connectivity (also
using expanders)[Rei]. We will cover it in future lectures.

3.3.2 Hitting Time and Cover Time

As in the previous section, let l be the mixing time of a graph G on n vertices. Consider a
random walk beginning at an arbitrary vertex s. Then, recall that for l′ ≥ l, it is true for
any t that

Prob
[
Random walk is at vertex t after l′ steps

]
≥ 1

2n
.

It follows that the expected time for a random walk to reach t is at most 2n · l, so the
hitting time of G is at most 2n · l, which is polynomial in n. Similarly, after 2n2 · l steps,
the walk will have reached each vertex with high probability. Thus, the cover time of G is
also polynomial in n.

Tighter results are known for both the hitting time and cover time, as summarized in
the following theorems.
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Theorem 3.15. Let G be an arbitrary undirected graph on n vertices. Then,

1. [BW] H(G) ≤ 4
27n3 − 1

9n2 + O(n), and

2. [Fei1] C(G) ≤
(

4
27 + o(1)

)
n3.

Theorem 3.16 ([Fei2]). Let G be a d-regular undirected graph on n vertices. Then, C(G) ≤
2n2.

The bound given in Theorem 3.16 is also known to be tight.

3.3.3 Universal Traversal Sequences

Universal traversal sequences (UTS) were originally defined by Cook, and later suggested
by [AKL+] as a possible means to derandomize Theorem 3.14.

Consider a sequence S ∈ {1, 2, · · · , d}l(n) for some function l. Now, consider a d-regular
undirected graph G where all the edges adjacent to each vertex have been labeled with
distinct integers from 1 to d. These labellings need not be consistent in the sense that
one edge might have two different labels assigned to it by two different vertices. For each
vertex s, we can now use S to define a walk on G starting at s. Specifically, if we are at
vertex v after i steps, we go to vertex v′ where vv′ is the edge labeled Si by v. We say
S is a “universal traversal sequence” if this walk traverses every vertex of the graph for
every possible beginning vertex on every labeling of every n vertex d-regular graph. We are
interested in constructing UTS of short length (i.e., l(n) = poly(n)).

It is not obvious how to construct a UTS or even whether one exists. However, a
sufficiently lengthy random string will be a UTS with high probability.

Theorem 3.17. Suppose every d-regular, n vertex graph has cover time at most C (note
C ≤ 2n2 by Theorem 3.16). Then, there exists a UTS for d-regular, n vertex graphs of
length at most 4ndC log n.

Proof. Choose S uniformly at random from {1, 2, · · · , d}4ndC log n.
Let G be a random labeled d-regular graph on n vertices and u be a random starting

vertex in G. The expected time for the random walk S to cover every vertex of G is at
most C, so by Markov’s inequality, a random walk will cover every vertex within 2C steps
with probability at least 1

2 . Since S can be decomposed into 2nd log n disjoint, and hence
independent, random sequences of length 2C, it follows that S will cover all the vertices of
G with probability at least 1− 1

22nd log n = 1− 1
n2nd . Hence,

Prob
G,u,S

[S covers all vertices of G starting at u] ≥ 1− 1
n2nd

.
Let N denote the number of ways of choosing a labeled d-regular graph G and a starting

vertex u. For each vertex and each label, we can choose an adjacent vertex, and we can
also choose one distinguished starting vertex. Thus, N ≤ n · nnd.

Now, the probability that there exists one configuration (i.e., a labeled graph G and a
starting vertex u) where S does not cover every vertex is at most N · 1

n2nd ≤ n
nnd = o(1).

Thus, with high probability, S is a UTS. The result follows.
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To use a UTS to derandomize Theorem 3.14, this result is insufficient. For that purpose,
we would need to construct a UTS deterministically using logarithmic space. In general,
such a construction has not been found. However, we know how to construct UTS if we
relax either the restriction that the length of the UTS must be polynomial or the restriction
that the UTS holds good for all d-regular graphs on n vertices. The following is a flavor of
such results under such relaxations.

Theorem 3.18. • [Ist] A UTS (of polynomial length) can be constructed deterministi-
cally in O(log n) space for cycles.

• [HW] A UTS (of polynomial length) can be constructed deterministically in O(log n)
space for d-regular expanders which are “consistently labelled’1

3. [Rei] A UTS (of polynomial length) can be constructed deterministically in O(log n)
space for d-regular undirected graphs which are consistently labelled.

4. [Nis] A UTS, of length O(nlog n), can be constructed deterministically in O(log2 n)
space for general d-regular graphs with general labellings.

3.3.4 Random Walks on Expanders

Finally, we apply Theorem 3.9 to the case of expanders. We know the mixing time is O( log n
1−λ )

but λ is bounded by a constant for expanders. Thus, the mixing time on an expander is
just O(log n), which is the best possible (up to constant factors) since the diameter of an
expander is O(log n). It follows that expanders are rapidly mixing, which will allow for
some applications to derandomization in the next lecture.
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