
CS369E: Expanders April 25, 2005

Lecture 4: Derandomization

Lecturer: Cynthia Dwork Scribe: Adam Barth & Prahladh Harsha

In today’s (and the next) lecture(s), we will discuss applications of expanders in the
context of derandomization. The three applications we will consider are the following:

• Use of random walks on expanders as an error reduction technique for randomized
algorithms.

• a pseudo-random generator to fool space bounded machines.

• Derandomized linearity testing

We will discuss the first two applications in this lecture and postpone the linearity testing
to the next lecture.

4.1 RP error reduction

Consider an RP algorithm with constant error probability that uses r random bits. We
will improve the error probability to 2−k with r + O(k) random bits. Compare this with
(1) the brute force k-independent trials, which would require O(kr) random bits to achieve
the same error probability and (2) the technique due to Karp, Pippenger and Sipser [KPS]
(discussed in Lecture 1) which uses r random bits (i.e., no extra random bits) and achieves
an error probability of 1/poly(r). We will use random walks on expanders to reduce the
error of RP algorithms. Ajtai, Komlos and Szemeredi first used random walks on expanders
in the context of small-space derandomization [AKS]. The proof we present in lecture is
due to Impagliazzo and Zuckerman [IZ].

The KPS technique, though great in terms of the number of extra random bits being
used is limited by the fact that the running time of the improved algorithm is at least
poly(1/δ) where δ is the (new reduced) error of the algorithm. Hence, we can reduce the
error to at most 1/poly. The technique, discussed today, will further reduce the error to
2−k at the cost of only O(k) extra random bits as opposed O(rk) random bits in the k
independent trails, while the algorithm still runs in (randomized) polynomial time.

As in KPS, we will use a d-regular expander with V = {0, 1}r, thus |V | = 2r and d is
a constant. As in KPS, we will assume that there exists an implicit construction of such
expanders in the following sense: given any vertex v and any index i in the range 1 . . . d
(where d is the degree of the expander), we can in time polynomial in |v| and |i|, compute
the ith-neighbor of v. The expanders constructions we will discuss later in the course will
satisfy such strong properties.

Recall that to find witnesses, KPS began at a random vertex and completely explored
all vertices within a ball of radius O(k). Here, we also start at a random vertex but instead
of exploring all vertices in a ball, we will walk randomly for k steps and run the original
RP algorithm along all vertices along this random walk. Thus the total randomness uses is
at most r + k log d since log d bits are required to choose a random neighbor.

4-1

Clearly, if the input is a NO instance, then this new algorithm will also reject. Our
concern is that there might exist YES instances, for which the random walk fails to arrive
at even one membership witness. The following theorem shows that this is highly unlikely.

Theorem 4.1 (Hitting Property of Expander Random Walks). Given a graph G = (V,E)
with spectral expansion λ and B ⊂ V , the probability a random walk of length k, starting
from a random vertex r0 ∈R V , starts and remains in B is ≤

(
µ2 + λ2

)k/2
, where µ =

|B|/|V | is the density of B.

For every RP language L and every x ∈ L, |Wx|/2r ≥ 3/4. For our application to
derandomization, we set B = V \Wx and obtain the required error-reduction for RP.

Proof. We wish to bound Prr0,...,rk

[
r0, . . . , rk ∈ B

]
, where ri is the ith vertex encountered

in the random walk on G.
Let A be the normalized adjacency matrix for G, where the vertices of G are ordered

such that the first |B| vertices are the elements of B. Fix P to be the projection matrix
onto B, that is

P =
(

I|B|×|B| 0|B|×|V \B|
0|V \B|×|B| 0|V \B|×|V \B|

)
.

In other words, Pi,j = 1 if i = j and i, j ∈ 1, . . . , |B| and is 0 otherwise. For any distribution
π on the set of vertices V , note that ‖Pπ‖1 is the probability that a vertex chosen according
to π is in the set B.

Fix u to be the uniform distribution on V . As mentioned above, ‖Pu‖1 is the probability
a uniformly randomly selected vertex lies in B, i.e. ‖Pu‖1 = µ. Similarly, ‖P (AP)u‖1 is the
probability r1 is also in B, i.e. the probability both r0, r1 ∈ B. By an inductive argument,
we seek to bound ‖P (AP)ku‖1. Observe ‖(PAP)ku‖1 = ‖P (AP)ku‖1, as P is idempotent.
It will be more convenient to work with ‖(PAP)ku‖1 than ‖P (AP)ku‖1. We now switch to
the L2 norm and will later return to the L1 norm.

We first show that a single application of PAP to any vector x reduces its L2-norm by
a factor of

√
µ2 + λ2.

Claim 4.2. ∀x ∈ Rn, ‖(PAP)x‖2 =
√

µ2 + λ2 · ‖x‖2.

Assuming this claim, we complete the proof of the theorem. Applying the claim k times,
we obtain

‖(PAP)kx‖2 ≤
(
µ2 + λ2

)k/2 · ‖x‖2.

We now return to the L1 norm.

‖(PAP)ku‖1 ≤
√

N‖(PAP)ku‖2 By Cauchy-Schwarz Inequality

≤
√

N
(
µ2 + λ2

)k/2 ‖u‖2

=
(
µ2 + λ2

)k/2
.

4-2

We now prove Claim 4.2.
Proof of Claim 4.2: The main intuition behind the proof is that A reduces the length
of component of the vector x that is orthogonal to u while P reduces the length of the
component of x along u. Together, they reduce the length of x.

Fix y = Px and split y = y‖ + y⊥, where y‖ is parallel to u and y⊥ is perpendicular to
u. By the triangle inequality and Ay‖ = y‖, ‖PAy‖2 ≤ ‖Py‖‖2 + ‖PAy⊥‖2. Because of the
second eigenvalue, ‖Ay⊥‖2 ≤ λ‖y⊥‖2 ≤ λ‖y‖2 ≤ λ‖x‖2 (since the length of y is at most
that of x, recall that y is the projection of x). Therefore,

‖PAy⊥‖2 ≤ ‖Ay⊥‖2 ≤ λ‖x‖2 (1)

As for the y‖ term,

y‖ =
(

y · u
‖u‖22

)
u, which implies y‖ =

(∑
i

yi

)
u.

By observing y = Px and so y has support |B| = µN .

‖y‖‖22 =
N∑

i=1

(
∑µN

i=1 yi)2

N2

=
(
∑µN

i=1 yi)2

N

≤
µN

(∑
i y

2
i

)
N

(By Cauchy-Schwarz inequality)

= µ‖y‖22

On the other hand, since y‖ = (
∑

i yi) u, we have that (Py‖)j = (
∑

i yi)/N for j = 1, . . . , µN
and 0 otherwise. Hence,

‖Py‖‖22 =
µN∑
j=1

(
∑

i yi)
2

N2

= µN
(
∑

i yi)
2

N2

= µ‖y‖‖22

Combining the two we have, ‖Py‖‖22 ≤ µ‖y‖‖22 ≤ µ2‖y‖22 ≤ µ2‖x‖22. Combining equation (1)
we have ‖(PAP)x‖22 ≤ (µ2 + λ2)‖x‖22. Hence, ‖(PAP)x‖2 ≤

√
µ2 + λ2‖x‖2

In this result about RP, we worry about not hitting a witness. For a similar result
about BPP, however, we need to show we encounter approximately the correct fraction of
appropriate witnesses. For random walks on the complete graph (i.e. independent trials),
Chernoff bounds tell us the witness fraction will be close to the appropriate ratio with
high probability. It is possible to obtain a similar Chernoff bound for random walks on
expanders, but we omit the details.

4-3

4.2 PRGs for Space Bounded Computation

The general idea of pseudo-random generators is to output a long string from a short,
truly random seed such that some restricted class of adversaries (typically time-bounded
adversaries) cannot distinguish (with greater than some probability) the long string from a
long string of truly random bits. We think of a generator as taking a seed of length s(n)
and producing a string of length f(n).

Definition 4.3. Let M be a randomized Turing machine using, on input w, f(|w|) random
bits. The family {gn}∞n=1 of functions gn : {0, 1}s(n) → {0, 1}f(n) is an ε-generator for M
if, for all w,∣∣∣∣ Pr

r∈{0,1}f(|w|)

[
M(w, r) accepts

]
− Pr

z∈{0,1}s(|w|)

[
M(w, g|w|(z)) accepts

]∣∣∣∣ ≤ ε

Typically, pseudo-random generators are constructed to fool time-bounded adversaries.
Here, we consider constructing a generator to fool (randomized) space-bounded adversaries
(specifically logspace machines).

4.2.1 Randomized Logspace TM

Before proceeding any further, we have to clarify a point regarding how the random bits
are accessed in a randomized space bounded computation (logspace in our case). There are
2 varying definitions of randomized space bounded TMs based on the manner the random
bits are accessed

• The TM obtains the random bits as and when required by it.

• The string of random bits is fed as an auxiliary off-line input (on a separate tape) in
addition to the regular input to the TM. In this case, the head accessing the random
bits on this tape can move back and forth on the tape.

It is to be noted that in the case of randomized time bounded computation it is immaterial
which convention we observe. For randomized space bounded computation, we shall consider
only TMs of the first kind or equivalently consider TMs of the second kind in which the
head on the random tape is restricted in the sense that it can only move right along the tape
(i.e., the random tape is one-way read-only tape) Recall that a space S-bounded machine
is also effectively time-bounded, for some large time bound 2S .

4.2.2 Nisan’s Generator

In this lecture, we will construct a pseudo-random generator for space bounded machines
using expanders. The first such PRG construction was given by Nisan [Nis]. Nisan’s con-
struction used hash functions instead of expanders. In this lecture, we give the construction
due to Impagliazzo, Nisan and Wigderson [INW], that uses expanders.

Typically, we would like the generator to also run within the space-bound S. If this were
the case, we would be able to completely derandomize the randomized space S-bounded
machine. Unfortunately, we won’t be able to achieve something as strong as that. Instead,

4-4

we let the generator use more space (specifically S2 space) than the space S-bounded TM
it fools.

We will prove the following theorem in today’s lecture.

Theorem 4.4. There exists a n-space-bounded Turing machine G : {0, 1}O(log2 m) →
{0, 1}m such that for all randomized S-space-bounded Turing machines M , G is a (1/2S)-
generator for M , where m = 2S and n = O(log2 m).

4.2.3 Proof of Theorem 4.4

Before going into proving the existence of a PRG as mentioned in Theorem 4.4, we shall
first study the structure of the computation tableau of a randomized space S TM and find
how this structure can be exploited to reduce the randomness. The computation tableau
for a randomized space S TM is as shown in Figure 1, i.e., it is a very thin (width at most
S), but possibly very long (length can be as long as 2S) tableau.

S2

S

random
bits

Figure 1: The Computation Tableau of a space S TM

In the original definition of the randomized TM, the computation requires at most 2S

random bits. We will break the tableau into several components (see Figure 2), each of
which require exactly R random bits. Thus, there are at most 2S/R such components. For
simplicity, we will assume that there are actually 2S components. R will be typically Θ(S)
for our purposes, but our proof will work even for larger R.

Consider the first two components A1 and A2 both of which require random strings
r1 and r2 respectively each of length R. If r1 and r2 are chosen independently, then by
definition the 2 components work to give the right results. We would like to choose r1 and
r2 in such a manner that their behavior is not significantly different from the case when

4-5

���
����
����
��
���

�	�	�	�	�
	
	
	
	

�	�	�	�	��	�	�	�	�

	
	
	
	
�	�	�	�	�

S

S

S

S

S

S

R

R

R

R

R

R

A

A

A

A

A

A

1

2

3

4

2 −1

2 S

S

Figure 2: Breaking the tableau into components each requiring R random bits

r1 and r2 are chosen independently. We would now use the fact that the computation
tableau is very thin (more specifically, at most S bits are communicated between the two
components A1 and A2) to let us choose r1 and r2 in a manner better than independently.

To put things more formally, we have 2 algorithms A1 and A2 such that

A1 ←−−−− x1yb1

A2 ←−−−− x2y
b2

Figure 3: A1, A2 with random inputs

• A1 takes an input x1 of length r and outputs a string b1 of length c.

• A2 takes as input the output b1 of A1 and another string x2 of length r and outputs
a string b2 of length c (see Figure 3).

What we are in search of is a generator that supplies strings x1 and x2 in a fashion
better than choosing them independently. For notational brevity, given a function g, define
functions gl and gr such that gl(z) and gr(z) denote the left half and the right half of the

4-6

string g(z) (i.e., g(z) = gl(z) ◦ gr(z) and |gl(z)| = |gr(z)|)1. See Figure 4.

Definition 4.5. A function g (g : {0, 1}t → {0, 1}r×{0, 1}r) is defined to be a ε− generator
for communication c if for all functions A1 and A2 such that A1 : {0, 1}r → {0, 1}c and
A2 : {0, 1}c × {0, 1}r → {0, 1}c, we have that

∀b
∣∣∣∣ Prob
x1,x2∈{0,1}r

[A2(A1(x1), x2) = b]− Prob
z∈{0,1}t

[
A2(A1(gl(z)), gr(z)) = b

]∣∣∣∣ < ε

A1 ←−−−− gl(z)yb1

A2 ←−−−− gr(z)y
b2

Figure 4: A1, A2 with inputs from generator

For notational convenience, we shall call a 2−2c−generator for communication c a c−generator.
For the present we shall assume the following lemma and present its proof later (in

Section 4.3).

Lemma 4.6. There exists a constant k > 0 such that for all r, c, there exists a polynomial
time and linear space computable c−generator g where g is such that g : {0, 1}r+kc →
{0, 1}r × {0, 1}r.

Given such a c-generator, we can generate pseudo-random strings for every pair of
successive components (A2i−1 and A2i), such that their behavior is almost similar to the
case when pure random strings are fed to all the components. More formally, we let g1 :
{0, 1}R+kS → {0, 1}R×{0, 1}R be the S-generator guaranteed by lemma 4.6 (i.e., by setting
r = R and c = S in the lemma). For every pair of components (A2i−1 and A2i), instead
of feeding them each with pure random strings of length R, we now take one random
string of length R + kS, run the generator g1 on this string and feed the output of the
generator to the two components A2i−1 and A2i (See Figure 5). By doing so, we require
only 2S−1 · (R + KS) random bits as opposed to 2S · R random bits. Furthermore, each
application of the generator g1 causes an error of at most 1/22S (since g1 is a S-generator).
Hence, the total error incurred is at most 2S−1/22S since we run the generator g1 at most
2S−1 times.

We now have 2S−1 components each of which require R+kS random bits (see Figure 5).
Furthermore, as before each pair of successive components communicate at most S bits of
information. Hence, we can once again apply the generator to reduce the number of random
bits required by every pair of components from R + kS each to R + 2kS total. Moreover,
we can perform this operation repeatedly till we finally have just one component left. More
formally we do the following (also see Figure 6).

1◦ denotes the concatenation operator

4-7

��

���

���
R

R

R + kS

���

��

���
R

R

R + kS

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
���

���
R

R

R + kS

g1

g1

g1

�
����
����
��
���

S

S

S

S

S

S

A

A

A

A

A

A

1

2

3

4

2

2 − 1S

S

Figure 5: Using S-generator to save randomness

Let gi : {0, 1}R+ikS → {0, 1}R+(i−1)kS × {0, 1}R+(i−1)kS be a S−generator for i =
1, 2, . . . , S as guaranteed by lemma 4.6 (i.e., by setting r = R + (i − 1)kS and c = S
in the lemma). Define functions Gi : {0, 1}R+ikS → {0, 1}2i·R for i = 0, 1, . . . S inductively
as follows

G0(z) = z

Gi(z) = Gi−1(gl
i(z)) ◦Gi−1(gr

i (z))

We shall show that the existence of GS implies Theorem 4.4. Clearly, by definition of
GS , GS is a Space(n) TM (i.e., it runs in space O(R + kS2)). We only have to show that
GS fools all randomized space S TMs, which is implied by the following lemma.

Lemma 4.7. For all TMs A that run in space S and in time 2S, GS is an 2−S−generator
for A

Proof. Each application of the generator gi, for any i, incurs an error of at most 1/22S (as
guaranteed by Lemma 4.6). There are at most 2S−1+2S−2+ · · ·+2+1 = 2S−1 applications
of the generator gi (over all i) (see Figure 6). Hence, the maximum error incurred is at
most (2S − 1)/22S < 1/2S . Thus, proved.

4.3 Proof of Lemma 4.6 using Expanders

We prove Lemma 4.6 using the expander mixing lemma

4-8

g1

g1

g1

���
����
����
��
���

�	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	�

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
�	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	�

�	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	�

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

�	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	�

�	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	�

�	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	�

�	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	�

�	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	��	�	�	�	�

S

S

S

S

S

S

A

A

A

A

A

A

1

2

3

4

2

2 − 1S

S

R

R

R

R

R

R

R + kS

R + kS

R + kS

R + 2kS

R + 2kS

R + S2

g2

g2

gi

i

gS

g

GS

Figure 6: Pseudo-random generator GS for Space S machines

Lemma 4.8 (Expander Mixing Lemma). If G = (V,E) is a D-regular graph with spectral
expansion λ, then for all sets S and T ⊆ V , we have∣∣∣∣e(S, T)

|E|
− |S|
|V |
· |T |
|V |

∣∣∣∣ ≤ λ

√
|S|
|V |
· |T |
|V |
≤ λ,

where e(S, T) denotes the number of edges between the sets S and T .

Lemma 4.6 basically tells us that Figure 3 can be replaced by Figure 4. In other words,
the ε−generator for communication r + kc, g, should construct strings gl(z) and gr(z) such
that functions A1 and A2 are fooled into believing that these strings were random ones. The
main idea is to view the set of strings {0, 1}r as the vertices of an expander G = (V,E) and
choose the strings gl(z) and gr(z) to be the endpoints of a random edge of the expander.

The actual construction of the c-generator is as follows: Let G = (V,E) be a D =
26c-regular Ramanujan expander graph on |V | = 2r vertices. (Recall that a D-regular
Ramanujan graph is a D-regular graph with the best possible spectral expansion, namely
λ ≈ 1/

√
D. Such graphs are constructed by Lubotsky, Philips and Sarnark [LPS]). Note

that for super-constant c, the above expander has super-constant degree. We can either
construct such a Ramanujan expander explicitly or start with a constant degree Ramanujan
expander and then take a suitable power of it to increase the degree). The generator
g : {0, 1}r+6c → {0, 1}r×{0, 1}r works as follows: On input z = (x, i) ∈ {0, 1}r×{0, 1}d(=6c),
output (gl(z), gr(z)) = (x, y) where y is the vertex reached by taking the ith edge out of x.
Proof of Lemma 4.6: Let b be any string that is a possible output of the pair of

4-9

algorithms (A1, A2). For every b′ ∈ {0, 1}c, define the following:

Sb′ =
{
x ∈ {0, 1}r|A1(x) = b′

}
Tb′ =

{
x ∈ {0, 1}r|A2(b′, x) = b

}
i.e., if x1 ∈ Sb′ and x2 ∈ Tb′ , A1(x1) = b′ and A2(b′, x2) = b. Hence,

Prob
x1,x2

[A2(A1(x1), x2) = b] =
∑

b′∈{0,1}c

Prob
x1,x2

[x1 ∈ Sb′ ∧ x2 ∈ Tb′]

=
∑

b′∈{0,1}c

|Sb′ |
|V |
· |Tb′ |
|V |

Similarly,

Prob
z∈{0,1}r+d

[
A2(A1(gl(z)), gr(z)) = b

]
=

∑
b′∈{0,1}c

Prob
(x,i)

[x ∈ Sb′ ∧ (ith edge out of x leads to Tb′)]

=
∑

b′∈{0,1}c

e(Sb′ , Tb′)
|E|

Hence, ∣∣∣∣Prob
x1,x2

[A2(A1(x1), x2) = b]− Prob
z∈{0,1}r+d

[
A2(A1(gl(z)), gr(z)) = b

]∣∣∣∣
=

∣∣∣∣∣∣
∑

b′∈0,1c

|Sb′ |
|V |
· |Tb′ |
|V |
− e(Sb′ , Tb′)

|E|

∣∣∣∣∣∣
≤

∑
b′∈0,1c

∣∣∣∣ |Sb′ |
|V |
· |Tb′ |
|V |
− e(Sb′ , Tb′)

|E|

∣∣∣∣
≤

∑
b′∈0,1c

λ (By Expander Mixing Lemma)

≤ 2cλ

≤ 2c · 1√
D

= 2c · 1
23c

=
1

22c

Thus, proved.

References

[AKS] Miklos Ajtai, Janos Komlos, Endre Szemeredi: “Deterministic Simulation in
LOGSPACE”, STOC 1987: 132-140.

4-10

[INW] Russell Impagliazzo, Noam Nisan, Avi Wigderson: “Pseudorandomness for network
algorithms”. STOC 1994: 356-364

[IZ] Russell Impagliazzo, David Zuckerman: “How to Recycle Random Bits”, FOCS
1989: 248-253.

[KPS] Richard Karp, Nicholas Pippenger and Michael Sipser: ”A time-randomness trade-
off”, AMS Conference on Probabilistic Computational Complexity, 1985.

[LPS] Alexander Lubotzky, R. Phillips, P. Sarnak: “Ramanujan graphs”. Combinatorica
8(3): 261-277 (1988)

[Nis] Noam Nisan: “Pseudorandom generators for space-bounded computation”. Combi-
natorica 12(4): 449-461 (1992)

4-11

	RP error reduction
	PRGs for Space Bounded Computation
	Randomized Logspace TM
	Nisan's Generator
	Proof of Theorem 4.4

	Proof of Lemma 4.6 using Expanders

