
CMSC 39600: PCPs, codes and inapproximability 25 Sep, 2007

Lecture 1: The PCP Theorem – Introduction and two views
Lecturer: Prahladh Harsha Scribe: Joshua A. Grochow

In today’s lecture, we will introduce the PCP Theorem from two different points of view – (1)
hardness of approximation, and (2) proof verification and then prove the equivalence of both the
versions of the PCP Theorem.

1.1 Hardness of Approximation

One of the goals of classical computational complexity – perhaps even the goal – is to gain a better
understanding of the difficulty of various computational problems, such as:

• MAXCLIQUE: Given a graph G, output the vertices in its largest clique.

• 3CNF satisfiability: Given a 3CNF Boolean formula, output a satisfying assignment if one
exists. A related problem is that of MAX3SAT : Given a 3CNF Boolean formula, output an
assignment which satisfies the maximum number of clauses.

• 3-COLOR: Given a graph G, color the vertices with 3 colors such that no edge is monochro-
matic if such a coloring exists.

• SET COVERING PROBLEM: Given a collection of sets S1, S2, . . . , Sm that cover a universe
U = {1, 2, . . . , n}, find the smallest sub-collection of sets Si1 , Si2 , . . . that also cover the uni-
verse

• ...

Rather than studying these problems directly, it is often convenient to study polynomially equivalent
decision problems, i.e. computational problems whose output is always a simple “yes” or “no.” For
example, the decision problem equivalents of the above problems are:

• CLIQUE = {〈G, k〉|graph G has a clique of size ≥ k}

• 3SAT = {ϕ|ϕ is satisfiable}

• SET-COVER = {〈U ; {S1, . . . , Sm}, k〉|∃1 ≤ i1 ≤ i2 ≤ . . . , ik ≤ m, such that
⋃m
j=1 Sij = U}

• ...

It is more convenient to work with the decision equivalents as they are simpler though they are
polynomially equivalent to the original computational problems. The theory of NP-completeness
discusses the hardness of these computational problems by studying the hardness of the equivalent
decision problems.

Similarly, when we study approximation algorithms for computational problems, it is often useful
to study a restricted set of polynomially equivalent problems. First, what is an approximation
algorithm?

Definition 1.1. An algorithm A is said to be an α-approximation algorithm for a (maximization)
computational problem Π and some 0 < α < 1 if for all instances x of the problem Π, α ·OPT (x) ≤
A(x) ≤ OPT (x), where OPT (x) denotes the optimum value associated with the instance x. (For
the case of minimization problems, the inequalities get reversed, i.e., OPT (x) ≤ A(x)α−1 ·OPT (x))

1-1

For example, an α-approximation algorithm for the clique problem would output (the size of)
a clique that was at least α times as large as the largest clique in the input graph. For another
example, note that a random assignment will satisfy 7/8 of the clauses in any 3CNF formula, so
a randomized 7/8-approximation to MAX3SAT can simply output a random assignment. (this
particular result can be derandomized using the method of conditional expectations.)

We would like to study the hardness of these approximation problems. As in the case of compu-
tational problems, it would be nice if we could capture the hardness of the approximation problems
via decision problems. The analogue of decision problems for approximation algorithms are known
as gap problems, and these are exactly the problems that are used to study the hardness of ap-
proximation. Whereas a decision problem specifies a set of “yes” instances – and thus implicitly
specifies that all other instances are “no” instances – a gap problem explicitly specifies both the
“yes” instances YES and the “no” instances NO. Obviously we require Y ES∩NO = ∅, but – unlike
in decision problems – we do not require that Y ES ∪NO covers all instances of the problem.

For example, gap-3SATα (for α ≤ 1) is the gap problem whose (Y ES,NO) are defined as follows:

Y ES = {〈ϕ, k〉|there is an assignment satisfying ≥ k clauses of ϕ}
NO = {〈ϕ, k〉|every assignment satisfies ≤ αk clauses of ϕ}

where ϕ is a 3CNF formula and k any positive integer.
Any instance of the problem which is not specified as either YES or NO is a “don’t care” instance:

that is, an algorithm solves a gap problem (Y ES,NO) if it outputs “yes” on all x ∈ Y ES and “no”
on all x ∈ NO, and we don’t care what the algorithm says on other instances x. Thus, if an algorithm
solves a gap problem and outputs “yes” on input x, all we can conclude in general is that x /∈ NO,
since x might be a “don’t care” instance.

As promised, approximation problems are polynomially equivalent to gap problems. We show
this in the case of MAX3SAT below.

Proposition 1.2. α-approximating MAX3SAT is polynomially equivalent to solving gap-3SATα.

Proof. (⇒) Suppose there is an α-approximation algorithm A to MAX3SAT . Then, consider the
following algorithm B for gap-3SATα.

B : “On input 〈ϕ, k〉
1. Run A on ϕ and let k′ = A(ϕ).
2. Accept iff k′ ≥ αk. ”

B solves gap-3SATα: For if k′ ≥ αk, then there must be some assignment satisfying at least
αk clauses, so ϕ /∈ NO and the algorithm outputs “yes.” Conversely, if αk > k′, then since
k′ ≥ αOPT (ϕ) it is the case that k > OPT (ϕ), so there is no assignment satisfying at least k
clauses. Thus ϕ /∈ Y ES and the algorithm outputs “no.”

(⇐) Suppose instead there is an algorithm B that solves gap-3SATα. Then

A : “On input ϕ
1. Let m be the number of clauses of ϕ.
2. Run B on 〈ϕ, 1〉, 〈ϕ, 2〉, 〈ϕ, 3〉, . . . , 〈ϕ,m〉.
3. Let the largest k such that B accepted 〈ϕ, k〉
4. Output αk ”

is an α-approximation to MAX3SAT . For if B rejects 〈ϕ, k+ 1〉, we know it is not a YES instance,
so ϕ cannot have any assignment satisfying strictly more than k clauses, i.e. k ≥ OPT (ϕ), or,
multiplying both sides by α, αk ≥ αOPT (ϕ). But since B accepted 〈ϕ, k〉, there must be some
assignment to ϕ satisfying at least αk clauses, i.e. OPT (x) ≥ αk. Thus OPT (x) ≥ αk ≥ αOPT (x).

1-2

Although gap-3SATα is a nice example, it will be convenient for us to use what we call gap-3SAT′α,
defined as follows:

Y ES = {ϕ|ϕ ∈ 3SAT}
NO = {ϕ|all assignments satisfy ≤ αm clauses}

(where, as above, ϕ is a 3CNF formula with m clauses). gap-3SAT′α is identical to gap-3SATα but
for the fact that the second argument k of the instance 〈ϕ, k〉 of gap-3SATα is forced to be m, the
number of clauses.

We can now state the PCP Theorem, from the perspective of hardness of approximation as
follows

PCP Theorem 1. There exists 0 < α < 1 such that the 3-coloring problem 3-COLOR Karp-reduces
to gap-3SAT′α, i.e. there is some polynomial time reduction R : {graphs} → {3CNF} ×N, such that

G ∈ 3-COLOR ⇒ R(G) = 〈ϕ, k〉 ∈ Y ES
G /∈ 3-COLOR ⇒ R(G) = 〈ϕ, k〉 ∈ NO.

Corollary 1.3. There exists 0 < α < 1 such that gap-3SAT′α is NP -hard and so is gap-3SATα

Corollary 1.4. α-approximating MAX3SAT is NP -hard.

1.2 Proof Verification

A proof system consists of a verifier V and prover P . Given a statement x, such as “ϕ is satisfiable”
or “G is 3-colorable,” P produces a candidate proof π for the statement ϕ. The verifier V then
reads the statement-proof pair (ϕ, π) and either accepts or rejects the proof π for ϕ. We require two
properties of any proof system proof system:

Completeness Every true statement has a proof. In other words

if x is true, then ∃π such that V (x, π)accepts.

Soundness A false statement does not have a proof. In other words,

if x is false, then ∀π, V (x, π) rejects.

Variations of this general definition are (can be) used to define many complexity classes of impor-
tance, for instance:

Definition 1.5. A language L is in NP if there is a deterministic polynomial time verifier V and
a polynomial p such that

1. (Completeness) (∀x ∈ L)(∃π)(|π| = p(|x|) and V (x, π) accepts)

2. (Soundness) (∀x /∈ L)(∀π(|π| ≤ p(|x|)⇒ V (x, π) rejects)

We can then ask the question: what happens if we allow V to be randomized? Historically, this
led to the development of the classes AM (Arthur-Merlin), IP (interactive proofs), which further led
to the classes ZK (zero-knowledge proofs), MIP (multi-prover interactive proofs), , and eventually
PCP s. For a nice writeup of this history, see [Bab90] and [O’D05]. The original proof of the PCP
theorem in fact goes through almost all of these: IP,AM,MIP, . . . , but in this course we will not
follow this route, instead we will give Dinur’s proof of the PCP Theorem [Din07].

We now state the PCP theorem in the language of proof verification

1-3

PCP Theorem 2. Every L ∈ NP has a probabilistically checkable proof (PCP) where the verifier
V tosses ≤ CL log n coins, probes ≤ Q locations of the proof, and

1. x ∈ L⇒ ∃pπPr[V π(x) accepts] = 1

2. x /∈ L⇒ ∀pπPr[V π(x) accepts] ≤ 1/2

(where ∃pπ and ∀pπ means “there exists a π of length polynomial in |x|” and “for all π of length at
most p(|x|)”). Here, CL is a constant dependent on L and Q an universal constant.

The above theorem is succinctly written using the notation (which we will formally define in
the next lecture) a L ∈ PCP1,1/2[CL log n,Q]. Thus, the theorem states that ∃q such that NP ⊆⋃
c≥0 PCP1,1/2[c log n, q]. Note that with only log n coins, the verifier cannot even select random

indices in a proof that is more than polynomially long, so the restriction to polynomially long proofs
is redundant. A similar result holds for NEXP in which the verifier tosses polynomially many
random coins (or using the notation above, NEXP ⊆ PCP1,1/2[poly(n), q]. In fact, this is one of
the results that led to the PCP Theorem. The constants Q and soundness parameter 1/2 can be
traded off against each other. In fact, the constant Q can be made as small as 3 while maintaining
the soundness parameter to by any constant greater than 1/2.

1.3 Equivalence of the two versions of the PCP Theorem

Our final topic will be to show that the PCP theorem, stated in two different languages, one – the
hardness of approximation viewpoint and the proof checking viewpoint are equivalent.

Lemma 1.6. PCP Theorem 1 ⇔ PCP Theorem 2.

Proof. (PCP Theorem 1 ⇒ PCP Theorem 2) Suppose there is a reduction R from 3-COLOR to
gap-3SAT′α as stated in PCP Theorem 1. The probabilistic proof system as stated in the PCP
Theorem 2 is then obtained using R as follows: Both the verifier and the prover apply the reduction
R to transform the input graph G to a formula ϕ. The proof π is an assignment for ϕ. The
verifier chooses a random clause of ϕ, say (xi1 ∨ xi1 ∨ xi3) (where the x’s represent variables or
their negations). Then the verifier probes the proof π for the values of these three variables, and
accepts if and only if the clause is satisfied. Since R is a reduction from 3-COLOR to gap-3SAT′α,
it follows that this proof system satisfies the properties stated in the PCP Theorem 2, thus proving
3-COLOR ∈ PCP1,α[O(log n), 3].

(PCP Theorem 2 ⇒ PCP Theorem 1) Given the PCP Theorem 2, we wish to Karp-reduce
3-COLOR to gap-3SAT′α. The basic idea is to encode the verifier’s possible actions by a Boolean
formula. For each random string R, the verifier’s action is a q-ary Boolean function hR (where q is
the number of bits of the proof probed by the verifier). We will now use the following fact, which
we state without proof.

Fact 1.7. For every q, there exists `(q), k(q) such that any q-ary Boolean function h can be encoded
by a 3CNF formula ϕh with k(q) clauses over q + `(q) variables x1, . . . , xq, z1, . . . , z`(q) such that

h(x) = 1 ⇒ ∃z, ϕh(x, z) = 1
h(x) = 0 ⇒ ∀z, ϕh(x, z) = 0

The variables z1, . . . , zl(q) are called extension variables.

This fact, essentially follows from the Cook-Levin Theorem, that shows the NP-completeness of
3SAT.

1-4

Thus, given a verifier V , we construct the formula

ϕ =
∧

coins R
ϕhR

.

Let M = 2Rk(q) be the number of clauses in ϕ. If G ∈ 3-COLOR, there exists some proof π such
that V accepts for all random coins R or equivalently hR(π) = 1 for all R. Hence, we can set the
value of all the extension variables such that ϕhR

(π, z) = 1 for all R. Hence, ϕ is satisfiable. On the
other hand, if G /∈ 3-COLOR, then at most half of the choices of R cause the verifier to accept or
equivalently for all π, for at least half the number of random coins R, hR(π) = 0. It then follows
from Fact 1.7 that for all assignments π, z, at least half of the ϕ(hR) are not satisfied. For each
ϕ(hR) not satisfied, at least one clause of it must be satisfied, so at most k(q)− 1 clauses of it can
be satisfied. Thus the total number of clauses of ϕ satisfies is at most M

2 + M
2 (1− 1

k) = M(1− 1
2k).

Thus, 3-COLOR Karp-reduces to gap-3SAT′α for α = 1− 1/2k.

References

[Bab90] László Babai. E-mail and the unexpected power of interaction. In Proc. 5th IEEE Con-
ference on Structure in Complexity Theory, pages 30–44. Barcelona, Spain, 8–11 July 1990.
doi:10.1109/SCT.1990.113952.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. (Preliminary
Version in 38th STOC, 2006). doi:10.1145/1236457.1236459.

[O’D05] Ryan O’Donnell. A history of the pcp theorem, 2005. Available from: http://www.cs.
washington.edu/education/courses/533/05au/pcp-history.pdf.

1-5

http://dx.doi.org/10.1109/SCT.1990.113952
http://dx.doi.org/10.1145/1236457.1236459
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf

	Hardness of Approximation
	Proof Verification
	Equivalence of the two versions of the PCP Theorem

