
Limits of Approximation Algorithms: PCPs and Unique Games
(DIMACS Tutorial Lecture notes)1

Organisers: Prahladh Harsha & Moses Charikar

1Jointly sponsored by the DIMACS Special Focus on Hardness of Approximation, the DIMACS
Special Focus on Algorithmic Foundations of the Internet, and the Center for Computational In-
tractability with support from the National Security Agency and the National Science Foundation.

Preface

These are the lecture notes for the DIMACS Tutorial Limits of Approximation Algorithms:
PCPs and Unique Games held at the DIMACS Center, CoRE Building, Rutgers University
on 20-21 July, 2009. This tutorial was jointly sponsored by the DIMACS Special Focus on
Hardness of Approximation, the DIMACS Special Focus on Algorithmic Foundations of the
Internet, and the Center for Computational Intractability with support from the National
Security Agency and the National Science Foundation.

The speakers at the tutorial were Matthew Andrews, Sanjeev Arora, Moses Charikar,
Prahladh Harsha, Subhash Khot, Dana Moshkovitz and Lisa Zhang. We thank the scribes
– Ashkan Aazami, Dev Desai, Igor Gorodezky, Geetha Jagannathan, Alexander S. Kulikov,
Darakhshan J. Mir, Alantha Newman, Aleksandar Nikolov, David Pritchard and Gwen
Spencer for their thorough and meticulous work.

Special thanks to Rebecca Wright and Tami Carpenter at DIMACS but for whose orga-
nizational support and help, this workshop would have been impossible. We thank Alantha
Newman, a phone conversation with whom sparked the idea of this workshop. We thank
the Imdadullah Khan and Aleksandar Nikolov for video recording the lectures. The video
recordings of the lecture will be posted at the DIMACS tutorial webpage

http://dimacs.rutgers.edu/Workshops/Limits/

Any comments on these notes are always appreciated.

Prahladh Harsha
Moses Charikar
30 Nov, 2009.

i

http://dimacs.rutgers.edu/Workshops/Limits/

Tutorial Announcement

DIMACS Tutorial
Limits of Approximation Algorithms: PCPs and Unique Games
DIMACS Center, CoRE Building, Rutgers University, July 20 - 21, 2009

Organizers:
* Prahladh Harsha, University of Texas, Austin
* Moses Charikar, Princeton University

This tutorial is jointly sponsored by the DIMACS Special Focus on Hardness of Approx-
imation, the DIMACS Special Focus on Algorithmic Foundations of the Internet, and the
Center for Computational Intractability with support from the National Security Agency
and the National Science Foundation.

The theory of NP-completeness is one of the cornerstones of complexity theory in theo-
retical computer science. Approximation algorithms offer an important strategy for attack-
ing computationally intractable problems, and approximation algorithms with performance
guarantees have been designed for a host of important problems such as balanced cut, net-
work design, Euclidean TSP, facility location, and machine scheduling. Many simple and
broadly-applicable approximation techniques have emerged for some provably hard prob-
lems, while in other cases, inapproximability results demonstrate that achieving a suitably
good approximate solution is no easier than finding an optimal one. The celebrated PCP
theorem established that several fundamental optimization problems are not only hard to
solve exactly but also hard to approximate. This work shows that a broad class of problems
is very unlikely to have constant factor approximations, and in effect, establishes a thresh-
old for such problems such that approximation beyond this threshold would imply P= NP.
More recently, the unique games conjecture of Khot has emerged as a powerful hypothesis
that has served as the basis for a variety of optimal inapproximability results.

This tutorial targets graduate students and others who are new to the field. It will aim
to give participants a general overview of approximability, introduce them to important
results in inapproximability, such as the PCP theorem and the unique games conjecture,
and illustrate connections with mathematical programming techniques.

List of speakers: Matthew Andrews (Alcatel-Lucent Bell Laboratories), Sanjeev Arora
(Princeton University), Moses Charikar (Princeton University), Prahladh Harsha (Univer-
sity of Texas, Austin), Subhash Khot (New York University), Dana Moshkovitz (Princeton
University) and Lisa Zhang (Alcatel-Lucent Bell Laboratories)

ii

Contents

Preface i

Tutorial Announcement ii

1 An Introduction to Approximation Algorithms
(Lecturer: Sanjeev Arora, Scribe: Darakhshan J. Mir) 1
1.1 Introduction . 1

1.1.1 Examples . 2
1.2 Polynomial-time Approximation Scheme (PTAS) . 2

1.2.1 Type-1 PTAS . 3
1.2.2 Type-2 PTAS . 4

1.3 Approximation Algorithms for MAXCUT . 4
1.3.1 Integer Program Version . 4
1.3.2 Linear Program Relaxation and Randomized Rounding 5
1.3.3 Semi Definite Programming (SDP) Based Method 6

2 The PCP Theorem: An Introduction
(Lecturer: Dana Moshkovitz, Scribe: Alexander S. Kulikov) 8
2.1 Optimization Problems and Gap Problems . 8
2.2 Probabilistic Checking of Proofs . 10

2.2.1 Checking of Proofs . 10
2.2.2 Local Checking of Proofs . 10
2.2.3 The Connection to The Hardness of Gap Problems 11
2.2.4 The PCP Theorem . 12

2.3 Projection Games . 13

3 Approximation Algorithms for Network Problems
(Lecturer: Matthew Andrews, Scribe: Gwen Spencer) 15
3.1 Network Flow Problems . 15

3.1.1 Minimum Cost Steiner Forest . 16
3.1.2 Congestion Minimization (Fractional) . 16
3.1.3 Congestion Minimization (Integral) . 17
3.1.4 Edge Disjoint Paths . 18
3.1.5 Minimum Cost Network Design . 19

4 Hardness of the Edge-Disjoint Paths Problem
(Lecturer: Lisa Zhang, Scribe: David Pritchard) 21
4.1 Overview . 21
4.2 Literature . 22
4.3 Hardness of Directed EDP . 23
4.4 Hardness of Undirected EDP . 24

4.4.1 Hardness of Bounded-Degree Independent Set 27
4.4.2 The Graphs G and H . 27

iii

4.4.3 Small Cycles . 28
4.4.4 Analysis Sketch . 29

5 Proof of the PCP Theorem (Part I)
(Lecturer: Prahladh Harsha, Scribe: Ashkan Aazami) 31
5.1 Probabilistically Checkable Proofs (PCPs) . 31

5.1.1 Strong Form of the PCP Theorem and Robust PCPs 33
5.1.2 Equivalence of Robust PCPs and 2-Provers Projection PCPs 34

5.2 Locally Checkable Codes . 34
5.2.1 Reed-Muller Code . 35
5.2.2 Low Degree Test (Line-Point Test) . 35
5.2.3 Zero Sub-Cube Test . 36

6 Proof of the PCP Theorem (Part II)
(Lecturer: Prahladh Harsha, Scribe: Geetha Jagannathan & Aleksandar Nikolov) 38
6.1 Recap from Part 1 . 38
6.2 Robust PCP for CIRCUIT-SAT . 39

6.2.1 Problem Definition . 39
6.2.2 Arithmetization of the Assignment . 39
6.2.3 Arithmetization of the Circuit . 40
6.2.4 The PCP Verifier . 41
6.2.5 PCP Composition . 42

7 H̊astad’s 3-Bit PCP
(Lecturer: Subhash Khot, Scribe: Dev Desai) 43
7.1 Introduction . 43
7.2 Proof Composition . 44
7.3 The Long Code and its Test . 45
7.4 Incorporating Consistency . 48
7.5 Concluding Remarks . 50

8 Semidefinite Programming and Unique Games
(Lecturer: Moses Charikar, Scribe: Alantha Newman) 51
8.1 Unique Games . 51
8.2 Examples . 52

8.2.1 Linear Equations Mod p . 52
8.2.2 MAXCUT . 52

8.3 Satisfiable vs Almost Satisfiable Instances . 52
8.3.1 Almost Satisfiable Instances of MAXCUT . 53

8.4 General Unique Games . 54
8.4.1 Integer Program for Unique Games . 54
8.4.2 Trevisan’s Algorithm . 55

8.5 Improving the Approximation Ratio . 58
8.6 Consequences . 59

9 Unique Games Hardness for MAXCUT
(Lecturer: Subhash Khot, Scribe: Igor Gorodezky) 61
9.1 Introduction: MAXCUT and Unique Games . 61

9.1.1 The Goemans-Williamson algorithm . 61
9.1.2 Label Cover and Unique Games . 62
9.1.3 The Main Result . 63

9.2 Majority is Stablest . 64
9.3 Proving Theorem 9.1.2 . 66

9.3.1 Motivation: the Long Code . 66
9.3.2 The Test . 66

iv

9.4 The Big Picture . 69

Bibliography 70

v

Lecture 1

An Introduction to Approximation Algorithms

Sanjeev Arora

Scribe: Darakhshan J. Mir

20 July, 2009

In this lecture, we will introduce the notion of approximation algorithms and see examples
of approximation algorithms for a variety of NP-hard optimization problems.

1.1 Introduction

Let Q be an optimization problem1. An optimal solution for an instance of this optimization
problem is a feasible solution that achieves the best value for the objective function. Let
OPT (I) denote the value of the objective function for an optimal solution to an instance I.

Definition 1.1.1 (Approximation ratio). An algorithm for Q has an approximation ratio
α if for instances I, the algorithm produces a solution of cost ≤ α · OPT (I) (α ≥ 1), if Q
is a minimization problem and of cost ≥ α · OPT (I) if Q is a maximization problem.

We are interested in polynomial-time approximation algorithms for NP-hard problems.
How does a polynomial-time approximation algorithm know what the cost of the optimal
solution is, which is NP-hard to compute? How does one guarantee that the output of the

1Formally, a (maximization) optimization problem is specified by two domains X ,Y, a feasibility function
feas : X × Y → {0, 1} and an evaluation function value : X × Y → R. An input instance to the problem is
an element x ∈ X . For each such x, the optimization problem is as follows:

OPT (x) = max {value(x, y)|y ∈ Y, feas(x, y) = 1} .

OPT (x) is also called the optimal value.

1

algorithm is within α of the optimal solution when it is NP-hard to compute the optimal
solution. In various examples below, we see techniques of handling this dilemma.

1.1.1 Examples

1. 2-approximation for metric Travelling Salesman Problem (metric-TSP):
Consider a complete graph G formed by n points in a metric space. Let dij be the
distance between point i and j. The metric TSP problem is to find a minimum cost
cycle that visits every point exactly once.

The following observation relating the cost of the minimum spanning tree (MST) to
the optimal TSP will be crucial in bounding the approximation ratio.

Observation 1.1.2. The cost of the Minimum spanning Tree (MST) is at most the
optimal cost of TSP.

Algorithm A:

(a) Find the MST

(b) Double each edge

(c) Do an “Eulerian transversal” and output its cost

Observe that TSP ≤ cost(A) ≤ 2 · MST ≤ 2 · TSP .

2. A 1.5-approximation to metric-TSP: The approximation ratio can be improved
to 1.5 by modifying the above using an idea due to Christofides [Chr76]. Instead of
doubling each edge of the MST as in the above algorithm, a minimum cost matching
is added among all odd degree nodes. Observe that cost of matching ≤ 1

2TSP . So,

Cost(Appx-algo) ≤ MST +
1

2
TSP ≤ 1.5 · TSP

It is to be noted that since 1976, there has been no further improvement on this
approximation ratio.

The above examples are examples of approximation algorithms that attain a constant
approximation ratio. In the next section, we will see how to get arbitrarily close to the
optimal solution when designing an approximation algorithm, ie., approximation ratios
arbitrarily close to 1.

1.2 Polynomial-time Approximation Scheme (PTAS)

A PTAS is a family of polynomial-time algorithms, such that for every ε > 0, there is an
algorithm in this family that is an (1 + ε) approximation to the NP-hard problem Q, if it
is a minimization problem and an (1 − ε)-approximation if Q is a maximization problem.

The above definition allows the running time to arbitrarily depend on ε but for each ε

it should be polynomial in the input size e.g. n
1
ε or n2

1
ε .

2

1.2.1 Type-1 PTAS

Various type of number problems typically have type-1 PTAS. The usual strategy is to
try to round down the numbers involved , so the choice of numbers is small and then use
Dynamic Programming. The classic example of such an approach is the Knapsack problem.

Knapsack problem Given a set of n items, of sizes s1, s2 . . . sn such that si ≤ 1 ∀i, and
profits c1, c2, . . . , cn, associated with these items, and a knapsack of capacity 1, find a subset
I of items whose total size is bounded by 1 such that the total profit is maximized.

The knapsack problem is NP-hard in general, however if the profits fall in a small-sized
set, then there exists an efficient polynomial time algorithm.

Observation 1.2.1. If the values c1, c2, . . . cn are in [1, . . . , w], then the problem can be
solved in poly(n,w)-time using dynamic programming.

This naturally leads to the following approximation algorithm for knapsack.

(1 + ε)-Approximation Algorithm

1. Let c = maxi ci.

2. Round down each ci to the nearest multiple of εc
n . Let this quantity be ri ·

(
εc
n

)
, i.e.,

ri = ⌊ci/
εc
n ⌋.

3. With these new quantities (ri) as profits of items, use the standard Dynamic Pro-
gramming algorithm, to find the most profitable set I ′.

The number of ri’s is at most n/ε. Thus, the running time of this algorithm is at most
poly(n, n/ε) = poly(n, 1/ε). We now show that the above algorithm obtains a (1 − ε)-
approximation ratio

Claim 1.2.2.
∑

i∈I′ ci is an (1 − ε)-approximation to OPT.

Proof. Let O be the optimal set. For each item, rounding down of ci causes a loss in profit
of at most εc

n . Hence the total loss due to rounding down is at most n times εc
n . In other

words, ∑

i∈O

ci −
εc

n
·
∑

i∈O

ri ≤ n
εc

n
= cε

Hence, εc
n

∑
i∈O ri ≥ OPT − cε. Now,

∑

i∈I′

ci ≥
εc

n
.
∑

i∈I′

ri ≥
εc

n

∑

i∈O

ri ≥ OPT − εc ≥ (1 − ε)OPT

The first inequality follows from the definition of ri, the second from the fact that I ′ is an
optimal solution with costs ri’s, the third from the above observation and the last from the
fact that OPT ≥ c.

3

1.2.2 Type-2 PTAS

In these kinds of problems we define a set of “simple” solutions and find the minimum
cost simple solution in polynomial time. Next, we show that an arbitrary solution may be
modified to a simple solution without greatly affecting the cost.

Euclidean TSP A Euclidean TSP is a TSP instance where the points are in R
2 and the

distances are the corresponding Euclidean distances.
A trivial solution can be found in n!. Dynamic Programming finds a solution in n22n.
We now give a high-level description of a n1/ε-time algorithm that achieves a (1 + ε)-

approximation ratio. Consider the smallest square that contains all n points. Use quad-tree
partitioning to recursively partition each square into four subsquares until unit squares are
obtained. We consider the number of times the tour path crosses a cell in the quad-tree. We
construct the “simple solution” to the problem by restricting the tour to cross each dividing
line ≤ 6

ε times. We can then discretize the lines at these crossing points. Each square has
≤ 24

ε number of crossing points. A tour may use each of these crossing points either 0, 1 or

2 times. So for the entire quadtree there are ≤ 3
24
ε = exp(24

ε) number of possibilities. For
details see Arora’s 2003 survey [Aro03].

In the next section, we will see examples of approximation algorithms which use linear
programming and semi-definite programming.

1.3 Approximation Algorithms for MAXCUT

The MAX-CUT problem is as follows: Given a graph G(V,E) with |V | = n, find maxS⊂V |E(S, S)|.
The notation E(S, S) refers to the set of all edges (i, j) such that vertex i ∈ S and vertex

j ∈ S.

1.3.1 Integer Program Version

Define variable xi, such that xi = 0, if vertex i ∈ S and xi = 1, if i ∈ S. We have the
following integer program:

Maximize
∑

(ij)∈E

eij

subject to

eij ≤ min{xi + xj , 2 − (xi + xj)}, ∀(i, j) ∈ E

x1, . . . , xn ∈ {0, 1}

Notice that eij 6= 0 ⇐⇒ xi 6= xj.

4

1.3.2 Linear Program Relaxation and Randomized Rounding

This can be converted to a Linear Program as follows:

Maximize
∑

(ij)∈E

eij

subject to

eij ≤ min{xi + xj , 2 − (xi + xj)}, ∀(i, j) ∈ E

x1, . . . , xn ∈ [0, 1]

Every solution to the Integer Program is also a solution to the Linear Program. So the
objective function will only rise. If OPTLP is the optimal solution to the LP, then:

OPTLP ≥ MAX-CUT

Randomized Rounding

We now round the LP-solution to obtain an integral solution as follows: form a set S by
putting i in S with probability xi. The expected number of edges in such a cut, E[|E(S, S̄)|]
can be then calculated as follows:

E[|E(S, S̄)|] =
∑

(i,j)∈E

Pr[(i, j) is in the cut]

=
∑

(i,j)∈E

xi(1 − xj) + xj(1 − xi)

The above calculates only an expected value of the cut, however if we repeat the above
algorithm several times, it can be seen by Markov’s inequality that we can get we can
get very close to this value. We now show that this expected value is at least half the
LP-optimal, which in turns means that it is at least half the MAX-CUT

Claim 1.3.1.

E[|E(S, S̄)|] =
∑

(ij)∈E

xi(1 − xj) + xj(1 − xi) ≥
1

2
OPTLP ≥ 1

2
MAX-CUT

Proof. We have

OPTLP =
∑

(ij)∈E

eij =
∑

(i,j)∈E

min{(xi + xj), 2 − (xi + xj)}

It can easily be checked that for any xi, xj ∈ [0, 1], we have

xi(1 − xj) + xj(1 − xi) ≥
1

2
· min{(xi + xj), 2 − (xi + xj)}.

Thus, a term by term comparison of the LHS of the inequality with OPTLP reveals that
E[|E(S, S̄)|] ≥ 1

2OPTLP ≥ 1
2MAX-CUT.

5

We thus, have a 1/2-approximation algorithm for MAX-CUT using randomized rounding
of the LP-relaxation of the problem. Actually, it is to be noted that the LP-relaxation is
pretty stupid, the optimal to the LP is the trivial solution xi = 1/2 for all i, which in
turn leads to OPTLP = |E|. But we do mention this example as it naturally leads to the
following more powerful SDP relaxation.

1.3.3 Semi Definite Programming (SDP) Based Method

We will now sketch a 0.878-approximation to MAX-CUT due to Goemans and Williamson [GW95].
The main idea is to relax the integer problem defined above using vector valued variables.
THE SDP relaxation is as follows:

Maximize
∑

(i,j)∈E

(1 − 〈vi,vj〉)
2

subject to 〈vi,vi〉 = 1, ∀i

Denote the optimal to the above SDP by OPTSDP . We first observe that the SDP is in fact
a relaxation of the integral problem. Let v0 be any vector of unit length, i.e., 〈v0,v0〉 = 1.
Consider the optimal cut S that achieves MAX-CUT. Now define,

vi =

{
v0 if i ∈ S
−v0 if i /∈ S

,∀i.

Consider the quantity
(1−〈vi,vj〉)

2 . This is 0 if the vectors vi and vj lie on the same side,
and equals 1 if they lie on opposite sides. Thus, OPTSDP ≥ MAX-CUT.

How do we round the SDP solution to obtain an integral solution. The novel round-
ing due to Goemans and Williamson is as follows: The SDP solution produces n vectors
v1, . . . ,vn. Now pick a random hyperplane passing through the origin of the sphere and
partition vectors according to which side tof the hyperplane they lie. Let (S, S̄) be the cut
obtained by the above rounding scheme. It is easy to see that

E[|E(S, S̄)|] =
∑

(i,j)∈E

Pr[(i, j) ∈ cut]

=
∑

(i,j)∈E

Pr[vi,vj lie on opposite sides of the hyperplane]

Let θij be the angle between vectors vi and vj . Then the probability that they are cut is
proportional to θij , in fact exactly θij/π. Thus,

E[|E(S, S̄)|] =
∑

(ij)∈E

θij

π

Let us know express OPTSDP in terms of the θij’s. Since θij = cos−1(〈vi,vj〉), we have

OPTSDP =
∑

(i,j)∈E

(1 − cosθij)

2

6

By a “miracle of nature”(Mathematica?) Goemans and Williamson observed that

θ

π
≥ (0.878 . . .) × 1 − cosθ

2
, ∀θ ∈ [0, π]

Hence,
E[|E(S, S̄)|]
OPTSDP

≥ 0.8788.

Thus, we have a 0.878-approximation algorithm for MAX-CUT.

7

Lecture 2

The PCP Theorem: An Introduction

Dana Moshkovitz

Scribe: Alexander S. Kulikov

20 Jul, 2009

Complementing the first introduction lecture on approximation algorithms, this lecture will
be an introduction to the limits of approximation algorithms. This will in turn naturally
lead to the PCP Theorem, a ground-breaking discovery from the early 90’s.

2.1 Optimization Problems and Gap Problems

The topic of this lecture is the hardness of approximation. But to talk about hardness of
approximation, we first need to talk about optimization problems. Recall the definition
of optimization problems from the earlier lecture. Let us begin by giving an example of a
canonical optimization problem.

Definition 2.1.1 (MAX-3SAT). The maximum 3-satisfiability problem (MAX-3SAT) is:
Given a 3-CNF formula ϕ (each clause contains exactly three literals) with m clauses,
what is the maximum fraction of the clauses that can be satisfied simultaneously by any
assignment to the variables?

We first prove the following important claim.

Claim 2.1.2. There exists an assignment that satisfies at least 7/8 fraction of clauses.

Proof. The proof is a classical example of the probabilistic method. Take a random as-
signment (each variable of a given formula is assigned either 0 or 1 randomly and indepen-
dently). Let Yi be a random variable indicating whether the i-th clause is satisfied. For any

8

1 ≤ i ≤ m (where m is the number of clauses),

EYi = 0 · 1

8
+ 1 · 7

8
,

as exactly one of eight possible assignments of Boolean constants to the variables of the
i-th clause falsifies this clause. Here we use the fact that each clause contains exactly three
literals.

Now, let Y be a random variable equal to the number of satisfied clauses: Y =
∑m

i=1 Yi.
Then, by linearity of expectation,

EY = E

m∑

i=1

Yi =

m∑

i=1

EYi =
7m

8
.

Since a random assignment satisfies a fraction 7/8 of all clauses, there must exist an assign-
ment satisfying at least as many clauses.

The natural question to ask is if we can do better? Can we find an assignment that
satisfies more clauses. Let us phrase this question more formally. For this, we first recall
the definition of approximation algorithms from the previous lecture.

Definition 2.1.3. An algorithm C for a maximization optimization problem is called α-
approximation (where 0 ≤ α ≤ 1), if for every input x, the algorithm C outputs a value
which is at least α times the optimal value, i.e.,

α · OPT(x) ≤ C(x) ≤ OPT(x) .

Claim 2.1.2 implies immediately that there exists an efficient (i.e., polynomial time)
7/8-approximation algorithm for MAX-3SAT. The natural question is whether there exists
an approximation algorithm that attains a better approximation ratio. The answer is that
such an algorithm is not known. The question that we are going to consider in this lecture is
whether we can prove that such an algorithm does not exist. Of course, if we want to prove
this, we have to assume that P 6=NP, because otherwise there is an efficient 1-approximation
algorithm.

There is some technical barrier here. We are talking about optimization problems, i.e.,
problems where our goal is to compute something. It is however much more convenient to
consider decision problems (or languages), where we have only two possible answers: yes or
no. So, we are going to transform an optimization problem to a decision problem. Namely,
we show that hardness of a certain decision problem implies hardness of approximation of
the corresponding optimization problem.

Definition 2.1.4. For a maximization problem I and A < B ∈ R
+, the corresponding

[A,B]-gap problem is the following promise decision problem1:

YES = {x|OPT(x) ≥ B}
NO = {x|OPT(x) < A}

1A promise problem Π is specified by a pair (YES, NO) where YES, NO ∈ {0, 1}∗ and YES and NO are
disjoint sets. Note there is no requirement that YES ∪ NO = {0, 1}∗. This is the only difference between
promise problems and languages.

9

We now relate the hardness of the maximization problem to the hardness of the gap
problem.

Theorem 2.1.5. If the [A,B]-gap version of a maximization problem is NP-hard, then it
is NP-hard to approximate the maximization problem to within a factor A/B.

Proof. Assume, for the sake of contradiction, that there is a polynomial time A/B-approximation
algorithm C for a maximization problem under consideration. We are going to show that
this algorithm can be used in order to solve the gap problem in polynomial time.

The algorithm for the gap problem is: for a given input x, if C(x) ≥ A, return “yes”,
otherwise return “no”.

Indeed, if x is a yes-instance for the gap problem, i.e., OPT(x) ≥ B, then

C(x) ≥ A/B · OPT(x) ≥ A/B · B = A

and we answer “yes” correctly. If, on the other hand, OPT(x) < A, then

C(x) ≤ OPT(x) < A

and we give the correct “no” answer.

Thus, to show hardness of approximation to within a particular factor, it suffices to
show hardness of the corresponding gap problem. Hence from now onwards, we focus on
gap problems.

2.2 Probabilistic Checking of Proofs

We will now see a surprising alternate description of the hardness of gap problems. The
alternate description is in terms of probabilistically checkable proofs, called PCPs for short.

2.2.1 Checking of Proofs

Let us first recall the classical notion of proof checking. NP is the class of languages that
have a deterministic polynomial-time verifier. For every input x in the language, there
exists a proof that convinces the verifier that x is in the language. For every input x not in
the language, there is no proof that convinces the verifier that x is in the language.

For example, when the language is 3SAT, the input is a 3CNF formula ϕ. A proof for
the satisfiability of ϕ is an assignment to the variables that satisfies ϕ.

A verifier that checks such a proof may need to go over the entire proof before it can
know whether ϕ is satisfiable: the assignment can satisfy all the clauses in ϕ, but the last
one to be checked.

2.2.2 Local Checking of Proofs

Can we find some other proof for the satisfiability of ϕ that can be checked locally, by
querying only a constant number of symbols from the proof?

For this to be possible, we allow the queries to be chosen in a randomized manner (other-
wise, effectively the proof is only of constant size, and a language that can be decided using a

10

polynomial-time verifier with access to such a proof can be decided using a polynomial-time
algorithm). The queries should be chosen using at most a logarithmic number of random
bits. The logarithmic bound ensures that the verifier can be, in particular, transformed
into a standard, deterministic polynomial time, verifier. The deterministic verifier would
just perform all possible checks, instead of one chosen at random. Since the number of
random bits is logarithmic, the total number of possible checks is polynomial. The number
of queries the deterministic verifier makes to the proof is polynomial as well.

To summarize, we want a verifier that given the input and a proof, tosses a logarithmic
number of random coins and uses them to make a constant number of queries to the proof.
If the input is in the language, there should exist a proof that the verifier accepts with
probability at least B. If the input is not in the language, for any proof, the verifier should
accept with probability at most A. The error probability is the probability that the verifier
does not decide correctly, i.e., 1 − B + A. If B = 1, we say that the verifier has perfect
completeness, i.e., it never errs on inputs in the language.

2.2.3 The Connection to The Hardness of Gap Problems

The NP -hardness of approximation of 3SAT is in fact equivalent to the existence of local
verifiers for NP :

Hardness ⇒ Local Verifier

For [A, 1]-gap-MAX-3SAT, there is a verifier that makes only 3 queries to the proof, has
perfect completeness, and errs with probability at most A!

On input formula ϕ, the proof is a satisfying assignment for ϕ. The verifier chooses a
random clause of ϕ, reads the assignment to the three variables of the clause, and checks
if the clause is satisfied. The verifier uses log m random bits, where m is the number of
clauses. If ϕ is satisfiable, the verifier accepts the proof with probability 1. If not, at most
A fraction of all clauses of ϕ can be satisfied simultaneously, so the verifier accepts with
probability at most A.

Moreover, the NP-hardness of [A, 1]-gap-MAX-3SAT yields local verifiers for all NP
languages! More precisely,

Claim 2.2.1. If [A, 1]-gap-MAX-3SAT is NP-hard, then every NP language L has a prob-
abilistically checkable proof (PCP). That is, there is an efficient randomized verifier that
uses only logarithmic number of coin tosses and queries 3 proof symbols, such that

• if x ∈ L, then there exists a proof that is always accepted;

• if x 6∈ L, then for any proof the probability to err and accept is at most A.

Note that the probability of error can be reduced from A to ε by repeating the action
of the verifier k = O(log 1/ε

log 1/A) times, thus making O(k) queries.

Local Verifier ⇒ Hardness

What about the other direction? Do local verifiers for NP imply the NP-hardness of gap-
MAX-3SAT, which would in turn imply inapproximability of MAX-3SAT?

11

For starters, let us assume that every language in NP has a verifier that makes three bit
queries and whose acceptance predicate is the OR of the three variables (or their negations).
Assume that for inputs in the language the verfier always accepts a vaild proof, while for
inputs not in the language, for any proof, the verifier accepts with probability at most
A. From the above correspondence between local verifiers and gap problems, we get that
[A, 1]-gap-MAX-3SAT is NP-hard.

What if the verifier instead reads a constant number of bits (not 3) and its acceptance
predicate is some other Boolean function on these constant number of bits? We will now
use the fact that every Boolean predicate f : {0, 1}O(1) → {0, 1} can be written as a 3-CNF
formula ϕ with clauses (and some additional variables z) such that for any assignment x
of Boolean values to variables of f , f(x) = 1 iff ϕ(x, z) is satisfiable for some z. We have
thus transformed the O(1)-query verfier with an arbitrary Boolean acceptance predicate to
a 3-query verifier with acceptance predicate an OR of the 3 variables (or their negations).
We thus have.

Claim 2.2.2. If every NP language L has a constant query verifier that uses only logarith-
mic number of coin tosses and queries Q proof symbols, such that

• if x ∈ L, then there exists a proof that is always accepted;

• if x 6∈ L, then for any proof the probability to err and accept is at most A.

then [A′, 1]-gap-MAX-3SAT is NP-hard for some A′ < 1.

Thus, we have shown that the problem of proving NP-hardness of gap-MAX-3SAT is
equivalent to the problem of constructing constant query verifiers for NP. But do such
verifiers exist?

2.2.4 The PCP Theorem

Following a long sequence of work, Arora and Safra and Arora, Lund, Motwani, Sudan and
Szegedy in the early 90’s constructed local verifiers for NP:

Theorem 2.2.3 (PCP Theorem (. . . ,[AS98],[ALM+98])). Every NP language L has a prob-
abilistically checkable proof (PCP). More precisely, there is an efficient randomized verifier
that uses only logarithmic number of coin tosses and queries O(1) proof symbols, such that

• if x ∈ L, then there exists a proof that is always accepted;

• if x 6∈ L, then for any proof the probability to accept it is at most 1/2.

The proof in [AS98, ALM+98] is algebraic and uses properties of low-degree polynomials.
There is a more recent alternate combinatorial proof for the theorem due to Dinur [Din07].
We will later in the workshop see some of the elements that go into the construction.

The PCP Theorem shows that it is NP-hard to approximate MAX-3SAT to within some
constant factor. The natural further question is: can we improve this constant to 7/8 (to
match the trivial approximation algorithm from Claim 2.1.2)? A positive answer to this
question would yield a tight 7/8-hardness for approximation of MAX-3SAT.

12

2.3 Projection Games

In 1995, Bellare, Goldreich, and Sudan [BGS98] introduced a paradigm for proving inap-
proximability results. Following this paradigm, H̊astad [H̊as01] established tight hardness
for approximating MAX-3SAT, as well as many other problems.

The paradigm is based on the hardness of a particular gap problem, called Label-Cover.

Definition 2.3.1. An instance of a projection game (also called label-cover) is specified by
bipartite graph G = (A,B,E), two alphabets ΣA, ΣB, and projections πe : ΣA → ΣB (for
every edge e ∈ E).

Given assignments A : A → ΣA and B : B → ΣB, an edge e = (a, b) ∈ E is said to be
satisfied iff πe(A(a)) = B(b). The value of this game is

max
A,B

(
Pr
e∈E

[e is satisfied]

)
.

In a label-cover problem: given a projection game instance, compute the value of the game.

A

B

?

?

πe

The PCP-theorem could be formulated as a theorem about Label-Cover.

Theorem 2.3.2 (. . . , [AS98], [ALM+98]). Label-Cover is NP-hard to approximate within
some constant.

Proof. The proof is by reduction to Label-Cover. Recall that we have a PCP verifier from
the previous formulation. We construct a bipartite graph as follows. For each possible
random string of the verifier, we have a vertex on the left-side. Since the verifier uses only
a logarithmic number of bits, the number of such strings is polynomial. For each proof
location, we have a vertex on the right-side. We add an edge between a left vertex (i.e., a
random string) and a right vertex (i.e., a proof location), if the verifier queries this proof
location on this random string. Thus, we defined a bipartite graph. We are now going to
describe the labels and projections.

The labels for the left-side vertices are accepting verifier views and for the right-side
are proof symbols. A projection is just a consistency check. For example, in case of MAX-
3SAT, we have satisfying assignments of a clause on the left-side and values of variables on
the right-side.

13

However, this theorem is not strong enough to get tight hardness of approximation
results. For this reason, we call this the weak projection games theorem. What we actually
need is a low error version of this theorem, which improves the hardness in Theorem 2.3.2
from “some constant” to “any arbitrarily small constant”.

Theorem 2.3.3 ((strong) Projection Games Theorem (aka Raz’s verifier) [Raz98]). For
every constant ε > 0, there exists a k = k(ε) such that is is NP-hard to decide if a given
projection game with labels of size at most k (ie., |ΣA|, |ΣB | ≤ k) has value 1 or at most ε.

The PCP construction in the strong projection games theorem is commonly refered to
as Raz’s verifier as the theorem follows from Raz’s parallel repetition theorem applied to
the construction in Theorem 2.3.2 [Raz98]. Recently, Moshkovitz and Raz [MR08] gave an
alternate proof of this theorem that allows the error ε to be sub-constant.

Why does the label size k depend on ε in the above theorem? This is explained by the
following claim, which implies that k must be at least 1/ε.

Claim 2.3.4. There is an efficient 1/k-approximation algorithm for projection games on
labels of size k (i.e., |ΣA|, |ΣB | ≤ k).

We will later in this tutorial see how the projection games theorem implies tight hardness
of approximation for 3Sat.

We remark that for many other problems, like Vertex-Cover or Max-Cut, we do not
know of tight hardness of approximation results based on the projection games theorem.
To handle such problems, Khot formulated the unique games conjecture [Kho02]. This
conjecture postulates the hardness of unique label cover, where the projections πe on the
edges are permutations. More on that – later in the tutorial.

14

Lecture 3

Approximation Algorithms for Network Problems

Matthew Andrews

Scribe: Gwen Spencer

20 July, 09

Lectures 3 and 4 will be on network/flow problems, the known approximation algorithms
and inapproximability results. In particular, this lecture will serve as an introduction to
the different types of network/flow problems and a survey of the known results, while the
follow-up lecture by Lisa Zhang will deal with some of the techniques that go into proving
hardness of approximation of network/flow problems.

3.1 Network Flow Problems

Network/Flow problems are often motivated by industrial applications. We are given a com-
munication or transportation network and our goal is to move/route objects/information
though these networks.

The basic problem that we shall be considering is defined by a graph G = (V,E) and
a set of (source,destination) pairs of nodes which we’ll denote (s1, t1), (s2, t2), etc. We will
sometimes call these pairs “demand pairs.” There are many variants of the problem:

• Only Connectivity is required. The question is one of feasibility: “Is it possible
to select a subset of the edge set of G that connects every (si, ti) pair?”

• Capacities must be respected. Each edge has a capacity, and each (si, ti) pair
has some amount of demand that must be routed from si to ti. Observe that this
problem is infeasible if there exists a cut in the graph which has less capacity than
the demand which must cross it. Imagine variations on this problem in which more

15

capacity can be purchased on an edge at some cost (that is, the capacities are not
strict): the question becomes: “What is the minimum amount of capacity that must
be purchased to feasibly route all demand pairs?”

• What solutions are “good” depends on the objective function. Consider
the difference between the objective of trying to minimize the maximum congestion
(where congestion is the total demand routed along an edge) and the objective of
trying to minimize the total capacity purchased: it is not hard to find examples where
a good solution with respect to the first objective is a bad solution with respect to
the second objective and vice versa. The maximum congestion objective is often used
to describe delay/quality of service.

• Splittable vs. unsplittable flow. In the unsplittable flow case all demand routed
between si and ti must travel on a single (si, ti) path. In the splittable flow case each
demand can be split so that it is routed on a set of paths between si and ti.

• Directed vs. Undirected. Is the graph directed or undirected? As a rule of thumb,
problems in which the graph is directed are more difficult.

Next we’ll consider some specific problems and describe what positive and negative results
exist for each of them:

3.1.1 Minimum Cost Steiner Forest

In this problem we are interested in simple connectivity. The input to the problem is a
graph with edge costs and a set of (si, ti) pairs. The goal is to connect each (si, ti) pair via
a set of edges which has the minimum possible total cost (the cost of a set of edges is just
the sum of the costs of all edges in the set).

Notice that any feasible solution to this problem is a set of trees.
Both positive and negative results exist for this problem:

• Positive: 2-approximation (Agrawal-Klein-Ravi [AKR95], Goemans-Williamson [GW95])

• Negative: APX-hard, there exists ε such that no 1 + ε approximation algorithm
exists for the problem unless P=NP.

3.1.2 Congestion Minimization (Fractional)

The input to this problem is a graph with edge capacities and a set of (si, ti) pairs. The
goal is to connect all (si, ti) pairs fractionally (that is, for all i, to route a total of one unit
of demand from si to ti along some set of paths in the graph) in a way that minimizes the
maximum congestion. The congestion on an edge is simply the total demand routed on
that edge divided by the capacity of the edge. The maximum congestion is the maximum
congestion taken over all edges in the graph.

This problem can be solved exactly in polynomial time via a linear program. We write
the linear program as follows: let ue denote the capacity of edge e, and have a decision
variable xp,i which is the amount of demand i that is routed on path p:

16

min z
s.t.

∑
p xp,i = 1 ∀i∑
i

∑
p:e∈p xp,i ≤ zue ∀e.

xp,i ≥ 0 ∀p, i.

The first set of constraints says that for each demand pair i, one unit of demand must
be routed from si to ti. The second set of constraints says that for each edge e, the sum of
all demand routed on e must be less than z times the capacity of e. Since the objective is
to minimize z, the optimal LP solution finds the minimum multiplicative factor z required
so that the capacity of each edge is at least 1/z times the total demand routed on that edge
(that is, the optimal z is the minimum possible maximum congestion).

Though this LP is not of polynomial size (the number of paths may be exponentially
large) it can be solved in polynomial time, using an equivalent edge-based formulation whose
variables ye,i represent the amount of flow from demand i routed through edge e. Hence we
can obtain an exact solution to the problem.

3.1.3 Congestion Minimization (Integral)

Now consider the Congestion Minimization problem when we require the routing be inte-
gral (all demand routed from si to ti must be routed on a single path). We can no longer
solve this problem using the linear program above. The following results are known:

• Positive: A O(log n/ log log n)-approximation algorithm where n is the number of
vertices due to Raghavan-Thompson [RT87]. This algorithm is based on the technique
of randomized rounding which we describe below.

• Negative: Andrews-Zhang [AZ07]) show that there is no (log n)1−ε-approximation
unless NP has efficient algorithms. More formally our result holds unless NP⊆ZPTIME(npolylog(n)),
where ZPTIME(npolylog(n)) is the class of languages that can be recognized by random-
ized algorithms that always give the correct answer and whose expected running time is
npolylog(n) = nlogk n for some constant k. The assumption that NP6⊆ZPTIME(npolylog(n))
is not quite as strong an assumption as NP 6= P but is still widely believed to be
true.

Note that the gap between the positive and negative results here is large. We com-
ment that for the directed version of the problem, a negative result has been proved that no
Ω(log n/ log log n)-approximation exists unless NP has efficient algorithms [CGKT07, AZ08].

We now describe the Raghavan-Thompson randomized rounding method for approxi-
mating the Integral Congestion Minimization Problem:

• Notice that the LP for the fractional problem is a linear relaxation of the IP we would
write for the integral case. Thus, the optimal solution to the fractional version is a
lower bound on the optimal value of the integral version: OPTfrac ≤ OPTintegral.

17

• Note that
∑

p xp,i = 1 for all i. Treat the xp,i as a probability distribution: demand i is
routed on path p with probability xp,i. By linearity of expectation, the expected con-
gestion of the resulting ranodmly rounded solution on each edge is at most OPTfrac.

In any given rounding though, some edges will have more than their expected conges-
tion. It is possible to show that for any fixed edge e, with large probability (≥ 1− 1

2n2)
the congestion on edge e is O(log n/ log log n)OPTfrac = O(log n/ log log n)OPTintegral.
By a union bound this implies that with probability at least 1

2 the maximum conges-
tion of the randomly rounded solution on any edge is O(log n/ log log n)OPTintegral.

For the directed case this gives the best achievable approximation. Whether something
better exists for the undirected case is an open question.

3.1.4 Edge Disjoint Paths

The input is a graph with edge capacities and a set of (si, ti) pairs. The goal is to connect
every (si, ti) pair integrally using disjoint paths (that is, to find a set of paths, one connecting
each pair, such that the paths for two distinct pairs share no edges). The goal is to connect
the maximum possible number of pairs.

The following results are known:

• Positive: A O(m1/2)-approximation where m is the number of edges, due to Klein-
berg [Kle96].

• Negative: (undirected) No (log n)1/2−ε -approximation exists unless NP has efficient
algorithms (Andrews-Zhang [AZ06]).

• Negative:(directed) No O(m1/2−ε)-approximation exists unless P=NP (Guruswami-
Khanna-Rajaraman-Shepherd-Yannakakis [GKR+03]).

We’ll look at Kleinberg’s m1/2 approximation algorithm for this problem (m is the number
of edges). Consider a greedy algorithm as follows:

1. Find the shortest path that connects two terminals.

2. Remove all the edges on that path from the graph.

3. Repeat until we cannot connect any more terminals.

Analysis. At all times we let G′ be the subgraph of G that contains the remaining edges
(i.e. the edges that have not been removed in Step 2). There are two cases in our analysis:
either the shortest path p linking two terminals in the remaining graph G′ has length at
most m1/2, or not:

• Suppose the shortest path p in G′ has length ≤ m1/2. Each edge in p intersects at
most one path from the optimal solution (since the paths in the optimal solution are
disjoint), so p intersects at most m1/2 paths from the optimal solution. Thus, when
the algorithm removes p, at most m1/2 paths are removed from the optimal solution.

18

Thus, the algorithm produces at least one path for every m1/2 paths in the optimal
solution.

• Suppose the shortest path p in G′ has length strictly greater than m1/2. Since the
paths in the optimal solution are disjoint, and all must have length at least as long
as p, the optimal solution has at most m/((m1/2)) = m1/2 paths in G′. Thus, to
get a m1/2 approximation for G′ the algorithm need only produce one path (so the
algorithm can just use p).

We mention that for this problem we can’t hope to do better with a linear programming
relaxation method because the gap between the optimal IP solution and the optimal LP
solution can be m1/2.

3.1.5 Minimum Cost Network Design

The input is a graph, a set of (si, ti) pairs and a cost function f(c) for placing capacity on
an edge. The goal is to route one unit of demand between each pair in a way that requires
the minimum cost expenditure for capacity.

Commonly considered cost functions include:

1. Linear: shortest paths are optimal.

2. Constant: this results in the Steiner forest problem.

3. Subadditive: economies of scale and buy-at-bulk problems. This is a nice way of
modelling how aggregating demand onto a core network is beneficial and arises in
many industrial network design problems. For subadditive cost functions the following
results are known:

• Positive: a O(log n)-approximation (Awerbuch-Azar [AA97], Bartal [Bar98],
Fakcharoenphol-Rao-Talwar [FRT04]).

• Negative: No (log n)1/4−ε approximation exists unless NP has efficient algo-
rithms (Andrews [And04]).

Summary

Approximation ratios vary widely for different types of network flow problems:

• Constant approximation: Steiner forest.

• O(log n)-approximation: Congestion minimization, Buy-at-Bulk network design.

• m1/2-approximation: Edge Disjoint paths.

19

Questions

Q: Are these algorithms actually what is used in practice?

Answer: Not exactly. Take the case of the randomized rounding that we covered: in
practice this technique may not give the best congestion due to the Birthday Paradox. It
is quite likely that there is some edge that gets higher congestion than the average by a
logarithmic factor. Hence, practical algorithms typically apply heuristics to try and reduce
the congestion. One technique that often works well is to sort the demands based on the
distance between the terminals (from closest to farthest). We then go through the demands
in order and try to greedily reroute them.

We remark that industrial networks often cost a huge amount of money and so tweaking
a solution a little to save even a single percent can generate meaningful cost savings. In
addition, a lot of these real applications are huge: cutting-edge computing power together
with CPLEX are not even close to being able to solve these problems exactly. Approximation
really is necessary.

20

Lecture 4

Hardness of the Edge-Disjoint Paths Problem

Lisa Zhang

Scribe: David Pritchard

20 July, 2009

4.1 Overview

The edge-disjoint paths problem (EDP) is the combinatorial optimization problem with
inputs

• a (directed or undirected) graph G with n nodes and m edges

• a list of k pairs of (not necessarily distinct) nodes of G, denoted (si, ti)
k
i=1

and whose output is

• a subset X of {1, . . . , k} representing a choice of paths to route

• si-ti paths {Pi}i∈X so that the Pi are pairwise edge-disjoint

and

• the objective is to maximize |X|.

In these notes, the main results are: a simple proof that for any ε > 0 it is NP-hard to
approximate the directed edge-disjoint paths problem to ratio m1/2−ε (Section 4.3); and a
more complex proof that for any ε > 0, if we could approximate the undirected edge-disjoint
paths problem to ratio log1/3−ε n, then there would be randomized quasi-polynomial time
algorithms for NP (Section 4.4).

21

4.2 Literature

For directed EDP, there is a simple
√

m-approximation algorithm due to Kleinberg [Kle96]
(see also Erlebach’s survey [Erl06]), which nearly matches the m1/2−ε-hardness result we will
present (which is due to Guruswami et al. [GKR+03]). A O(n2/3 log2/3 n) approximation is
also known [VV04].

For undirected EDP, Kleinberg’s simple algorithm [Kle96] still gives a
√

m-approximation,
but an improved

√
n-approximation was recently obtained by Chekuri et al. [CKS06].

The main technical ingredient in the proof we will present is the high girth argument,
which was used first in 2004 by Andrews [And04] and subsequently in a variety of pa-
pers [ACG+07, AZ06, AZ07, AZ08, AZ09, CK06, GT06b], some of which have closed the
approximability and inapproximability gaps of various problems up to constant factors.
Many of these papers deal with congestion minimization, where all demands must be routed
and the objective is to minimize the maximum load on any edge. Focusing on undirected
graphs, the papers most closely related to what we will show are:

• [And04], which introduced the high girth argument and gave a polylog-hardness for
buy-at-bulk undirected network design. For this problem, all demands must be routed,
and the cost minimized. The types of “buy-at-bulk” edges used in the hardness
construction were fixed-cost edges (which once bought, can be used to any capacity)
and linear-cost edges (where you pay proportional to the capacity used). The paper
reduced from a type of 2-prover interactive system, similar to PCPs.

• [AZ06], which gave the log1/3−ε n-hardness proof we will describe in these notes. The
paper reduced from Trevisan’s inapproximability results [Tre01] on the bounded de-
gree independent set problem. In turn, those resuls rely on advanced PCP technol-
ogy [ST00].

• [ACG+07] — a paper which was the culmination of merging several lines of work —
which resulted in an improved log1/2−ε n-hardness proof for undirected EDP. This
paper uses the hardness of constraint satisfaction problems, while the preliminary
versions use the Raz verifier (parallel repetition) and directly-PCP based methods.
This is so far the best inapproximability result known for undirected EDP, although
it is very far from the best known approximation ratio of

√
n [CKS06].

In more detail, the table below summarizes some results in the literature (lower bounds
assume NP 6⊂ ZPTIME(npolylogn), and some constant factors are omitted). Stars (⋆) denote
results in which the high girth method is used.

22

Problem Upper bound Lower Bound

Undirected EDP m1/2 [Kle96], n1/2 [CKS06] ⋆ log1/3−ε m [AZ06], ⋆ log1/2−ε m [ACG+07]

Directed EDP m1/2 [Kle96], n2/3 log2/3 n [VV04] m1/2−ε [GKR+03]

Undirected Congestion Minimization log m/ log log m [RT87] ⋆ log1−ε log m [AZ07], ⋆ log log m
log log log m

[RZ]

Directed Congestion Minimization log m/ log log m [RT87] ⋆ log1−ε m [AZ08], ⋆ log m
log log m

[CGKT07]

Undirected Uniform Buy-at-Bulk log m [AA97, FRT04] ⋆ log1/4−ε m [And04]

Undirected Nonuniform Buy-at-Bulk log5 m [CHKS06] ⋆ log1/2−ε m [And04]
Undirected EDP with Congestion c

(with some restrictions on c) n1/c [AR06, BS00, KS01] ⋆ log(1−ε)/(c+1) m [ACG+07]
Directed EDP with Congestion c

(with some restrictions on c) n1/c [AR06, BS00, KS01] ⋆nΩ(1/c) [CGKT07]

If the number k of terminal pairs is fixed, the undirected EDP problem is exactly solvable
in polynomial-time, using results from the theory of graph minors [RS95]. (As we will see
in Theorem 4.3.2, the directed case behaves differently.)

4.3 Hardness of Directed EDP

In this section we prove the following theorem.

Theorem 4.3.1 ([GKR+03]). For any ε > 0 it is NP-hard to approximate the directed
edge-disjoint paths problem (Dir-EDP) to within ratio m1/2−ε.

Although it is very common for inapproximability proofs in the literature to reduce one
approximation problem to another, this proof has the cute property that it reduces an exact
problem to an approximation problem. Phrased differently, the complete proof does not
rely on any PCP-like technology. Specifically, our starting point is the following theorem.

Theorem 4.3.2 ([FHW80]). The following decision problem (Dir-2EDP) is NP-hard:
given a directed graph G and four designated vertices s, s′, t, t′ in the graph, determine
whether there are two edge-disjoint directed paths, one from s to t, and another from s′ to
t′.

(Note, this immediately shows that it is hard to NP-hard to approximate (Dir-EDP)
to a factor better than 2.)

The key to proving Theorem 4.3.1 is a construction which maps (G, s, s′, t, t′) to an
instance (H, (si, ti)

k
i=1) of Dir-EDP where k is a parameter we will tune later. The con-

struction is illustrated in Figure 4.1. The two important properties of this construction are
the following:

(a) If G admits edge-disjoint s-t and s′-t′ paths (say P and P ′), then H has a solution of
value k (i.e. all pairs si-ti for 1 ≤ i ≤ k can be simultaneously linked by edge-disjoint
paths). To see this, we utilize the copies of P and P ′ within each copy of G; then it’s
easy to see there are mutually disjoint paths si-ti paths (the path leaving si goes up
through i − 1 copies of P , then right through k − i copies of P ′, to ti).

(b) If G does not admit edge-disjoint s-t and s′-t′ paths, then there is no solution for
H with value greater than 1. To see this, suppose for the sake of contradiction that
there is an si-ti path Pi and a sj-tj path Pj in H such that Pi, Pj are edge-disjoint.

23

s

t

s'
t'

t1

t2

t3

t4

t5

s1 s2 s3 s4 s5

Figure 4.1: Left: the graph G in an instance of Dir-2EDP. Right: The construction of
H for k = 5. Each small yellow object is a copy of G, and each other line is a directed edge.
This illustration is adapted from Erlebach [Erl06].

Without loss of generality i < j. Then a topological argument shows that there must
be some copy of H such that Pi uses the copies of s′ and t′ and Pj uses the copies of
s and t. This contradicts our assumption about the Dir-2EDP instance.

Facts (a) and (b) show that any algorithm that has approximation ratio better than k/1
on the Dir-EDP instance H also solves the Dir-2EDP instance.

Without loss of generality we assume G is (weakly) connected, then the encoding size of
the Dir-2EDP instance is proportional to |E(G)| and the encoding size of the Dir-EDP
instance is |E(H)| = O(k2|E(G)|). In order to conclude that it is NP-hard to approximate
the Dir-EDP instance to a factor better than k, we need |E(H)| to be polynomial in
|E(G)|. Thus we may take k = |E(G)|α for any constant α. Going back to the analysis, we

get k = |E(H)|
α

2α+1 ; hence by taking α → ∞, we get the desired result (that it is NP-hard
to approximate Dir-EDP to a factor k = m1/2−ε).

4.4 Hardness of Undirected EDP

In this section we sketch the proof of the following theorem.

Theorem 4.4.1 ([AZ06]). For any ε > 0, if we can approximate the directed edge-disjoint
paths problem (Undir-EDP) to within ratio O(log1/3−ε m), then every problem in NP has
a probabilistic always-correct algorithm with expected running time exp(polylog(n)), i.e.
NP ⊂ ZPTIME(exp(polylog(n))).

We fully describe the construction of the proof and give intuition for the analysis, but
skip some of the detailed parts and precise setting of parameters. The construction creates a

24

simple graph (i.e. one with no parallel edges) so the theorem also holds with log m replaced
by log n since these are the same up to a factor of 2. The proof shows more precisely
that NP ⊂ coRPTIME(exp(polylog(n))), i.e. it gives a quasi-polynomial size, randomized
reduction with one-sided error that is right at least (say) 2/3 of the time; then standard
arguments1 allow us to move to ZPTIME. Here is the proof overview.

• The starting point is the inapproximability of the independent set problem (IS) in
bounded-degree graphs: find a set of mutually non-adjacent vertices (an independent
set) with as large cardinality as possible. We denote the degree upper bound by ∆.

• As usual, our goal is to find a transformation from IS instances to Undir-EDP
instances which preserves the “NP-hard-to-distinguish gap” in the objective function.

• We will create a new graph G in the following way. Roughly we “define a path” Pi

for each vertex vi of the IS instance so that Pi ∩ Pj 6= ∅ iff vi, vj are adjacent. (It
is easy to see this is possible, with the length of Pi proportional to the degree of vi.)
Then we define G to be the union of all Pi. (See Figure 4.2.)

• To get some intuition for the rest of the proof, define the terminals si, ti of the
Undir-EDP instance to be the endpoints of Pi. Then it is almost true that the
Undir-EDP instance is isomorphic (in terms of feasible solutions) to the IS instance.
The significant problem is that G necessarily also contains si-ti paths other than Pi,
which may be used for routing. (Such paths are obtained by using a combination of
edges taken from different Pj ’s; see Figure 4.2.)

• To get around this problem, we transform G into a different graph H defined by two
parameters x, c. Each intersection of two paths Pi, Pj is replaced by c consecutive
intersections; and we replace each Pi with x images {Pi,α}x

α=1. The construction of
H has a lot of independent randomness, two consequences of which are that (i) when
vi, vj are adjacent, we can lower-bound the probability that Pi,α ∩ Pj,β 6= ∅ and (ii)
H has few short cycles. We call each Pi,α a canonical path; for each canonical path
its endpoints define a terminal pair for the new Undir-EDP instance.

• The optimum of the Undir-EDP solution is at least x times the optimum of the IS
instance. To get our hardness-of-approximation result, we also need that when the
Undir-EDP optimum is “large”, so is the IS optimum. This is done via a map from
Undir-EDP solutions R on H to IS solutions S on G. The map is parameterized by
a number a ≤ x. We (1) throw away all non-canonical paths in R and (2) take vi in
S iff at least a out of the x paths {Pi,α}x

α=1 are routed by Y . The final analysis uses
the fact that the canonical paths have length O(c∆) while most non-canonical paths
are long; the latter depends on the fact that H has few short cycles.

1We insert Q into standard complexity class names to denote quasi-polynomial time. Suppose NP ⊂
coRQP. Then there is a f(n)-time algorithm for SAT with f quasi-polynomial. This also implies NQP ⊂
coRQP since every NQP language with quasi-polynomial running time g(n) is equivalent (by the Cook-Levin
construction) to satisfiability of a formula of size g(n), and it can be decided in time f(g(n)) which is
quasi-polynomial. The definition of RQP immediately implies RQP ⊂ NQP hence RQP ⊂ coRQP. Taking
complements we deduce RQP = coRQP and it is easy to show that RQP ∩ coRQP = ZPQP, hence NP ⊂
coRQP = ZPQP. Alternatively, see Lemma 5.8 in [EH03] for a more efficient construction.

25

b
v1

b
v2

b
v3

b
v4

b
s2

b
u{2,3}

b
w{2,3}

b
u{1,2}

b
w{1,2}

b
u{2,4}

b
w{2,4}

b
t2

b t1

b s1

b
s3

b
t4

b
w{3,4}

b
u{3,4}

b
t3

b
s4

b

Figure 4.2: An illustration of how the independent set instance, G0 (left), yields a Undir-
EDP instance on graph G (right). The colour of vi in G0 corresponds to the colour of
canonical path Pi in G. Note that in this example, even though {v1, v2} is not an inde-
pendent set, there are edge-disjoint s1-t1 and s2-t2 paths (P1, and a non-canonical s2-t2
path).

26

4.4.1 Hardness of Bounded-Degree Independent Set

Trevisan [Tre01] showed that for any constant ∆, it is NP-hard to approximate the inde-
pendent set problem within ratio ∆/2

√
log ∆ on graphs with degrees bounded by ∆. For

our purposes, we need a version of this that works for super-constant ∆. By extending the
framework in Trevisan [Tre01], Andrews and Zhang [AZ06] proved the following:

Theorem 4.4.2. Consider the family of graphs with upper bound ∆ = logb n on degree,
where n is the number of nodes and b is a constant. If there is a (logb−ε n)-approximation
algorithm for IS on these graphs for any ε > 0, then NP ⊂ coRPTIME(nO(log log n)).

4.4.2 The Graphs G and H

First we give a formal description of the graph G we sketched earlier. Let G0 denote the IS
instance, without loss of generality G0 is connected. Each edge e = vivj of G0 yields two
vertices u{i,j}, w{i,j} ∈ V (G) and each vertex vi of G0 yields two vertices si, ti; these are
all the vertices of G. Let the neighbours of vi in G0 in any order be vp, vq, . . . , vr, then we
define the path Pi := (si, u

{i,p}, w{i,p}, u{i,q}, w{i,q}, . . . , u{i,r}, w{i,r}, ti). More precisely, for
each adjacent pair of vertices in this list we define an edge of G; this constitutes all of the
edges of G. Every edge of the form u{i,j}w{i,j} appears in both Pi and Pj , while every other
edge of G appears in exactly one Pi. The number of vertices and edges of G is O(|E(G0)|)
and the number k of terminal pairs is |V (G0)|.

There are two additional ideas needed to define H, one whose effect is to randomly
replace Pi by x images {Pi,α}x

α=1 and another whose effect is to increase the probability
that two paths Pi,α, Pj,β intersect when vivj ∈ E(G0).

Consider the following probabilistic operation fx on graphs: replace every vertex v by x
“copies” {vα}x

α=1, and replace every edge vv′ with a random bipartite matching of {vα}x
α=1

to {v′α}x
α=1, where these matchings are chosen independently for all input edges vv′. Thus

fx multiplies the total number of vertices and edges by x. Note that if vv′ is an edge of
some graph K and 1 ≤ α, β ≤ x then the probability that uαvβ ∈ fx(K) is exactly 1/x; we
will later use this fact, as well as the independence of the different random matchings, to
show that fx(K) behaves like a random graph in terms of short cycles. We define the image
of terminal pairs under fx as follows. Define Pi,α as the unique path in fx(G) obtained by
starting at si,α (which denotes (si)α) and following the images of edges of Pi. Pi,α does
not necessarily end at ti,α, rather it ends at ti,β =: t′i,α for some uniformly random β. The
terminal pairs of fx(G) are all pairs (si,α, t′i,α). We call the Pi,α canonical paths.

At this point it is straightforward to compute the following: if vivj ∈ E(G0) and α, β are
fixed, the probability that the paths Pi,α, Pj,β intersect in fx(G) is exactly 1/x. More gen-
erally, for subsets A,B of {1, . . . , x}, the probability Pr[{Pi,α}α∈A ∪{Pj,β}β∈B are mutually
edge-disjoint in fx(G)] can be expressed as some function δ(x, |A|, |B|)2 . We would like to
decrease this (i.e. increase the probability some Pi,α intersects some Pj,β), and to do so, we
consider a graph G′ obtained similarly to G except, for vivj ∈ E(G0), we force Pi and Pj

to intersect c times. We give an informal but precise definition since the formal definition
is lengthy. To construct G′ from G, we perform the following for all edges vivj ∈ E(G0):

2Explicitly, δ(x, |A|, |B|) = (x − |A|)!(x − |B|)!/(x − |A| − |B|)!x!.

27

b u{i,j}

b w{i,j}

b

b

b

b

b

b

b

b

Pi Pj Pi Pj

#1

#2

#3

Figure 4.3: Illustrating, for c = 3, the operation used to transform G (left) into G′ (right).

replace the intersection edge u{i,j}w{i,j} with the gadget pictured in Figure 4.3, and simulta-
neously redefine Pi, Pj to follow the indicated paths. Not only will this cause the new Pi and
Pj to intersect c times, but the images of these intersections under fx will be independent in
the sense that, for all subsets A,B of {1, . . . , x}, the probability Pr[{Pi,α}α∈A ∪ {Pj,β}β∈B

are mutually edge-disjoint in fx(G′)] decreases to δc(x, |A|, |B|).
Finally, H is defined to be fx(G′), with canonical paths Pi,α and terminal pairs defined

as for fx(G).

4.4.3 Small Cycles

The graph H = fx(G′) we defined is not quite a “random graph” in the usual (Erdős-
Renyi) sense, but it has enough randomness that it has a typical property of random
graphs, namely that the number of small cycles can be bounded. This is done using the
first moment method (Markov’s inequality), analogous to the 1963 Erdős-Sachs theorem
(e.g. that in the Erdős-Renyi model G(n, d/n) the number of cycles of length g is at most
dg in expectation).

If C is any simple cycle in G′, then it is not hard to see that the expected number of
simple cycles in H that are “images” of C is 1. This is a good bound but it is not quite
sufficient for our purposes, since cycles may exist in H whose inverse image in G′ is not
simple. To be precise about getting a bound, for each edge vv′ of G′, we say that it has x2

corresponding potential edges {vαv′β | 1 ≤ α, β ≤ x} in H = fx(G
′). (In any realization of

H, exactly x of these edges are actually present.) Then it is not hard to see that we get the

28

following: conditioned on the existence of any κ < x potential edges in H, the probability
that any other potential edge is in H is at most 1/(x − κ). Then the first moment method
allows us to show:

if g < x/2, E[# cycles in H of length ≤ g] ≤ O(n0c∆)g+1 (4.4.1)

where we define n0 = |V (G0)|. Note that this bound is independent of x; roughly speaking
this is because the factor of x in |V (H)| cancels with the factor 1/x in the probability of H
containing any given potential edge. Eventually, we will set g to be poly-logarithmic in n0,
and the right-hand side of Equation (4.4.1) will be quasi-polynomial in n0.

It is not hard to argue that H has maximum degree 3, so each vertex has O(2g) vertices
within distance g; combining this fact with Equation (4.4.1) gives us the following form of
the “high-girth argument” that we use in the final proof:

Pr[O(n0c∆)g+1 vertices in H have distance ≤ g to a cycle of length ≤ g] ≥ 9/10. (4.4.2)

4.4.4 Analysis Sketch

As mentioned earlier, our reduction uses the following map R 7→ S from Undir-EDP
routings on H to independent sets on G0, parameterized by a number a: put vi into S if at
least a out of the x paths Pi,α for i are routed by R. To be exact, S is only an independent
set with some probability, which we would like to make large. By applying simple bounds
to δ, for any A,B ⊂ {1, . . . , x} with |A|, |B| ≥ a and for i, j adjacent in G0, we have that

Pr[{Pi,α}α∈A ∪ {Pj,β}β∈B mutually edge-disjoint in fx(G
′)] ≤ exp(−ca2/x). (4.4.3)

For any two fixed adjacent vertices vi, vj in G0, by a union bound, the probability that any
subsets A,B with |A|, |B| ≥ a exist, such that A and B fail the event in (4.4.3) is at most(x
a

)(x
a

)
exp(−ca2/x). Therefore using another union bound,

Pr[S independent] ≥ 1 − |E(G0)|
(

x

a

)(
x

a

)
exp(−ca2/x). (4.4.4)

The setting of parameters in the proof is then chosen so that Pr[S independent] is at least
9/10. This, along with Theorem 4.4.2 and Equation (4.4.2), are the three sources of error
in the proof.

At a high level the analysis breaks the paths in R into four types,

(a) a canonical path Pi,α so that #{β|Pi,β ∈ R} ≥ a.

(b) a canonical path Pi,α so that #{β|Pi,β ∈ R} < a

(c) a non-canonical si,α-t′i,α path where si,α has distance ≤ g to a cycle of length ≤ g

(d) any other non-canonical si,α-t′i,α path

and applies the following analysis (recall n = |E(G0)|):

• The number of paths of type (a) is at most |S|x.

29

• The number of paths of type (b) is at most (n0 − |S|)a.

• The number of paths of type (c) is at most O(n0c∆)g+1 by (4.4.2).

• To upper bound the number of paths of type (d), let P ′ denote one such path. The
union of P ′ and Pi,α contains a simple cycle, but the length of that cycle is at least g.
The length of Pi,α is fixed at O(c∆) and hence the length of P ′ is at least g −O(c∆).
Since the type-(d) paths are disjoint, there are at most |E(H)|/(g − O(c∆)) of them.

This gives a lower bound on |S| in terms of |R|. The proof is then completed by
setting the parameters carefully. In detail, using the fact that the greedy algorithm for
independent set on G0 always gives a solution of value at least n0/(∆ + 1), we can show
that |S| is an independent set with size at least a constant times |R|/x provided that
g>∆2c, x>∆a, c>x

a ln x
a + x ln n0

a2 , x>∆2c · O(n0∆c)g hold, where we have omitted some
constant factors. (These conditions come from the relative contributions of the different
types of paths, as well as the error bounds.) The ratio of inapproximability for Undir-
EDP is then roughly ∆ as a function of the input size m = |E(H)| = O(n0c∆x), and it is
not hard to show that ∆ is roughly log1/3 m at maximum. (In [AZ06], a precise setting of
parameters is given.)

30

Lecture 5

Proof of the PCP Theorem (Part I)

Prahladh Harsha

Scribe: Ashkan Aazami

20 July, 2009

In this lecture and the follow-up lecture tomorow, we will see a sketch of the proof of the
PCP theorem. Recall the statement of the PCP theorem from Dana Moshkovitz’s lecture
earlier today. Dana had mentioned both a weak form (the original PCP Theorem) and
a strong form (Raz’s verifier or hardness of projective games). We need the strong form
as it is the starting point of most tight inapproximability results. “Standard proofs” of
the strong form proceed as follows: first prove the PCP Theorem [AS98, ALM+98] either
using the original proof or the new proof of Dinur [Din07] and then apply Raz’s parallel
repetition [Raz98] theorem to it to obtain the strong form. However, since the work of
Moshkovitz and Raz [MR08], we can alternatively obtain the strong form directly using
the proof techniques in the orginal proof of the PCP Theorem along with the composition
technique of Dinur and Harsha [DH09]. We will follow the latter approach in this tutorial.

5.1 Probabilistically Checkable Proofs (PCPs)

We first introduce the probabilistically checkable proof (PCP) and some variants of it.
Our goal is to construct a PCP for some NP-complete problem. We will work with the

NP-complete problem Circuit-SAT. Let C be an instance of the Circuit-SAT problem.
A PCP consists of a verifier V that is provided with a proof π of acceptance of the input
instance C. The goal of the verifier is to check if the given proof is “valid”. Given the input
C, the verifier V generates a random string R and based on the input instance C and the
random bits of R it generates a list Q of queries from the proof π. Next, the verifier V

31

queries the proof π at the locations of Q and based on the content of the proof in these
locations the verifier either accepts the input C as an acceptable instance or rejects it. The
content of π at the locations Q is called the local view of π and it is denoted by πQ. We
denote the local predicate that the verifier checks by ϕ; the verifier accepts if ϕ(πQ) = 1
and it rejects otherwise. The verifier has the following properties:

Completeness: If C is satisfiable then there is a proof π such that the verifier always
accepts with probability 1; i.e.,

∃π : Prob [ϕ(πQ) = 1] = 1.

Soundness: If C is not satisfiable then for every proof π the verifier accepts with proba-
bility at most δ (say δ = 1

3);

∀π : Prob [ϕ(πQ) = 1] ≤ 1

3
.

Figure 5.1: PCP and 2-queries projective PCP

The original PCP Theorem now can be stated formally as follows.

Theorem 5.1.1 (PCP Theorem [AS98, ALM+98]). Circuit-SAT has a PCP (with the
above completeness and soundness properties) that uses |R| = O(log n) random bits and
queries |Q| = O(1) locations of the proof where n is the size of the input circuit.

Note that the length of the proof π is polynomial in n, the size of the input instance C,
since the length of the random string is O(log n) so the verifier can make 2O(log n) number
of queries.

32

5.1.1 Strong Form of the PCP Theorem and Robust PCPs

Now we introduce a strong form of the PCP theorem, this is also called the 2-prover pro-
jection game theorem. In this type of PCPs, there are two non-communicating provers
A : UA → ΣA and B : UB → ΣB and a verifier V. Given the input instance C, the verifier
first generates a random string R of length logarithmic in the input size and then using
the random string, it determines two locations u and v and generates a projection function
πu,v : ΣA → ΣB. The verifier then queries the two provers UA and UB on locations u and
v respectively and accepts the provers’ answers if they are consistent with the projection
function ie., πu,v(A(u)) = B(v).

We can now state the strong from of the PCP theorem as follows.

Theorem 5.1.2 (Strong form of PCP (aka Raz’s verifier, hardness of projection games) [Raz98]).
For any constant δ > 0, there exist alphabets ΣA,ΣB such that the Circuit-SAT has a
2-prover projection game with a verifier V such that

Completeness: If C is satsifiable (C ∈ Circuit-SAT) then there exist two provers A :
UA → ΣA, B : UB → ΣB such that

Prob [πu,v(A(u)) = B(v)] = 1

Soundness: If C is not satisiable (C /∈ Circuit-SAT) then for all pairs of provers A :
UA → ΣA, B : UB → ΣB, we have

Prob [πu,v(A(u)) = B(v)] ≤ δ.

Now we introduce the notion of robust PCP. These PCPs have a stronger soundness
property. In the ordinary PCPs, the soundness property says that if the input instance C is
not an acceptable input, then the local predicate that the verifier checks is not satisfied with
high probability. In the robust PCPs the local view is far from any satisfying assignment
with high probability.

First for some notation. Given two codewords x and y, the agreement between x and
y is defined as agr(x, y) = Prob

i
[xi = yi]. For a given set S of code-words, we define the

agreement of S and x by agr(x, S) = maxy∈S agr(x, y). Let us denote the set of all satisfiable
assignments to the local predicate ϕ by SAT (Q).

The robust PCPs have the same completeness property as in the ordinary PCPs, but
they have a stronger soundness property. More precisely, the following soundness property
of regular PCPs is replaced by the stronger “robust soundness” property.

Soundness:
C /∈ Circuit-SAT ⇒ Prob [πQ ∈ SAT (ϕ)] ≤ δ

Robust Soundness:

C /∈ Circuit-SAT ⇒ E[agr(πQ, SAT (ϕ))] ≤ δ

We call PCPs with the robust soundness property, robust PCPs.

33

5.1.2 Equivalence of Robust PCPs and 2-Provers Projection PCPs

Note that robust PCPs are just regular PCPs with a stronger soundness requirement. We
now show that robust PCPs are equivalent to 2-provers projection PCPs. Given a robust
PCP with the verifier V and the prover π, we construct a 2-prover projective verifier V ′

and two provers A,B as follows. The prover B is the same prover as π. For each possible
random string R and the corresponding queries Q of the verifier V , the prover A has the
local view πQ at the location indexed by R; i.e., the prover A has all possible local views of
the prover π. The verifier V ′ of the 2-prover projection PCP is as follows.

1. Generate a random string R and compute a set Q of queries as in the verifier V.

2. Query 1: Asks the prover A for the entire “accepting” local view (i.e., πQ).

3. Query 2: Ask the prover B for a random location within the local view (i.e., (πQ)i).

4. Accept if the answer of the prover B is consistent with the answer of the prover A.

It is an easy exercise to check the following two facts. The constructed 2-provers PCP has
the completeness property. Tthe robust soundness of the robust PCP translates into the
soundness of the 2-provers PCP. A closer look at this transformation reveals that it is in fact,
invertible. This demonstrates a syntactic equivalence between robust PCPs and 2-prover
projection PCPs. Note that in this equivalence, the alphabet size of the left prover |ΣA|
translates to query complexity of the robust PCP verifier (to be precise, free-bit complexity
of robust PCP verifier). Given this equivalence, our goal to prove Theorem 5.1.2 can be
equivalently stated as constructing for every constant δ, robust PCPs for Circuit-SAT
with robust soundness δ and query complexity some function of δ (but independent of n).

5.2 Locally Checkable Codes

Our goal is to construct a robust PCP for the Circuit-SAT over a constant size alphabet
with constant number of queries for arbitrarily small soundness error. To achieve this goal,
we need to transform a NP-proof (or a certificate for an NP problem) to a proof that can
be locally checked. To do this, we use locally checkable codes. There are two potential
candidates for locally checkable codes.

1. The first one is the Directed Product code; the new proof of the PCP theorem by Dinur
and the proof of the parallel repetition theorem of Raz are based on this encoding.

2. The second one is the Reed-Muller code which is based on the low-degree polynomials
over a finite field F, and the original proof of the PCP theorem is based on this
encoding.

We use the Reed-Muller code in construction of the robust PCP.
A PCP, by definition, is a locally checkable encoding of the NP witness. In the rest of

today’s lecture, we shall construct locally checkable encodings of two very specific properties,
namely “low-degreeness” and “being zero on a sub-cube”. We will define these properties
formally shortly, however it is worth noting that neither of these properties is a NP-complete
property. In the next lecture, we will show how despite this, we can use the local checkability
of these two properties to construct PCPs for all of NP.

34

5.2.1 Reed-Muller Code

Let F be a finite field, and let Pm
d be the set of all m-variate polynomials of degree at most

d over F. The natural way of specifying a function f ∈ Pm
d is to list the coefficients of

f . It is easy to check that a m-variate polynomial of degree d has
(m+d

m

)
coefficients. The

Reed-Muller encoding of f is the list of the evaluations of f on all x ∈ F
m; the codeword

at the position indexed by x ∈ F
m has value f(x). The length of this codeword is |Fm|.

This encoding is inefficient but there is an efficient “local test” to find out if a given
codeword is close to a correct encoding of a low degree polynomial.

• Question: Given a function f : F
m → F, how does one check if f is a Reed-Muller

encoding: The straightforward way to do this is to interpolate the polynomial and
check if it has degree at most d.

• Question: Given a function f : F
m → F, how does one locally check if f is close to

a Reed-Muller encoding. A test for this purpose was first suggested by Rubinfeld
and Sudan [RS96] This test is based on the fact that a restriction of a low-degree
polynomial (over F

m) to a line (or any space with small dimension) is also a low-
degree polynomial.

5.2.2 Low Degree Test (Line-Point Test)

Given the evaluations of function f on all points in F
m. Our goal is to check if f is close

to a m-variate polynomial of degree at most d; we do this by checking the values of the
function f on a random line. A set {x + ty|t ∈ F}, for some x, y ∈ F

m, is called a line in
F

m.
Low Degree Test (LDT):

1. Pick a random line ℓ in F
m; this can be done by picking two random points x, y ∈ F

m.

2. Query the function f on all points of the line ℓ. Let f |ℓ denote the restriction of f on
the line ℓ (i.e., f |ℓ(t) = f(x + ty)).

3. Accept if f |ℓ is an univariate low-degree polynomial (i.e., f |ℓ ∈ P1
d).

Clearly, if f ∈ Pm
d , then f |ℓ is an univariate polynomial of degree at most d. Hence, we

have the perfect completeness.

Completeness: f ∈ Pm
d ⇒ Prob [LDT accepts] = 1

Rubinfeld and Sudan [RS96] proved the following form of soundness for this test.

Soundness: ∀δ,∃δ′ : Prob [LDT accepts] ≥ 1 − δ ⇒ f is (1 − δ′)-close to some low-degree

polynomial (i.e., agr(f,Pm
d) ≥ 1 − δ′).

We will actually need the following stronger soundness that was proven by Arora and
Sudan [AS03].

Stronger Soundness: E[agr(f |ℓ,P1
d)] ≥ δ ⇒ agr(f,Pm

d) ≥ δ−mε, where ε = poly(m,d, 1
|F|).

Raz and Safra [RS97] proved an equivalent statement (with better dependence of |F| on d)
for the plane-point test as opposed to the line-point test.

35

5.2.3 Zero Sub-Cube Test

In this section, we introduce another test that is used in the construction of robust PCPs.
Let f be a polynomial over F

m and let H be a subset of F. We want to test if f is a low
degree polynomial (i.e., f ∈ Pm

d) and if it is zero on the sub-cube Hm (i.e., f |Hm ≡ 0).
Using the low degree test (LDT) we can check if f ∈ Pm

d , but to test if f is zero on Hm it
is not enough to pick few random points from Hm and test if f is zero on those points.

Before describing the correct test, we present two results about the polynomials.

Lemma 5.2.1 (Schwartz-Zippel). Let f be a m-variate polynomial of degree d over F
m. If

f is not a zero polynomial (i.e., f 6≡ 0), then

Prob
x

[f(x) = 0] ≤ d

|F| .

The above lemma shows that if a low degree polynomial over a sufficiently large field is
not zero at every point, then it can only be zero on small fraction of points.

Proposition 5.2.2. Let f be a polynomial of degree at most d over F
m. The restriction

of f to Hm is a zero polynomial (i.e., f |Hm ≡ 0) if and only if there exist polynomials
q1, . . . , qm of degree at most d − |H| such that

f(x) =
m∑

i=1

gH(xi)qi(x), (5.2.1)

where gH(x) =
∏

h∈H (x − h) is an univariate polynomial (of degree |H|).

Now we describe the Zero Sub-cube Test. In the LDT we assumed that the evaluation
of f on all points are given in the proof table. By the above Proposition if the polynomial f
of degree at most d is zero on Hm then there are polynomials q1, . . . , qm of degree at most
d− |H| that satisfy Equation (5.2.1). In the Zero Sub-Cube Test, we require that the proof
table also contains the evaluations of q1, . . . , qm (in addition to the evaluation of f) on all
points in F

m.
Zero Sub-cube Test:

1. Choose a random line ℓ in F
m.

2. For f, q1, . . . , qm check if f |ℓ, q1|ℓ, . . . , qm|ℓ is a low degree polynomial. In more detail,
check if f |ℓ has degree at most d, and for each i = 1, . . . ,m check if qi|ℓ has degree at
most d − |H|.

3. For each x ∈ ℓ, check if f(x) =
∑m

i=1 gH(xi)qi(x).

4. Accept if each of the above tests passes, and reject otherwise.

Combining the soundness of the low-degree test and the above properties of polynomials,
we can prove the following completeness and soundness of the Zero Sub-cube Test. Let
Zm

d denote the set of m-variate polynomials P of degree d such that P |Hm = 0. Also for
any line ℓ, let acc(ℓ) denote the set of accepting local views of the Zero Sub-cube Test
for the random line ℓ.

36

Completeness: If f ∈ Zm
d , then Prob [Zero Sub-cube Test accepts] = 1 or equivalently

Prob [(f |ℓ, q1|ℓ, . . . , qm|ℓ) ∈ acc(ℓ)] = 1.

Soundness: E[agr((f |ℓ, q1|ℓ, . . . , qm|ℓ), acc(ℓ))] ≥ δ ⇒ agr(f,Zm
d) ≥ δ − mε − d/|F|, where

ε = poly(m,d, 1
|F|).

37

Lecture 6

Proof of the PCP Theorem (Part II)

Prahladh Harsha

Scribe: Geetha Jagannathan & Aleksandar Nikolov

21 July, 2009

6.1 Recap from Part 1

Recall that we want to construct a robust PCP for the NP-Complete problem. I.e. for every
n-sized instance x of the NP-complete problem L we want to construct a proof Π, which
can be checked by a verifier using a random string R of length log n and a constant-size
query Q. The verifier computes a local predicate ϕ of the local view Π|Q and accepts iff
ϕ(Π|Q) = 1. We want the construction to satisfy the following properties.

Completeness: If x ∈ L then there exists a proof Π such that

Prob
R

[ϕ(Π|Q) = 1] = 1.

Soundness: If x /∈ L then for all proofs Π,

E[agr(Π|Q, sat(ϕ))] ≤ δ.

Recall further that in Part I we constructed a PCP with the parameters above not for
any NP-complete property but for the specific “Zero on a Subcube” property. We say that
a function f : F

m → F satisfies the “Zero on Subcube” property iff:

• f is a low-degree polynomial P .

• P vanishes on Hm, where H ⊆ F.

38

6.2 Robust PCP for CIRCUIT-SAT

In this part of the proof we will show how to use the local test for Zero on a Subcube to
construct a PCP for the CIRCUIT-SAT problem.

6.2.1 Problem Definition

Figure 6.1: CIRCUIT-SAT’s input

CIRCUIT-SAT is the following decision problem:

• Input: A circuit C with n gates (Figure 6.1); k of them are the input gates w1, . . . , wk,
and the rest are OR and NOT gates with fan in at most 2 and fanout at most 1. Let’s
associate variables z1, . . . , zn with each gate (including the input gates). Variable zi

is the output of gate i. The output gate outputs 1.

• Output: 1 iff there exists an assignment to z1, . . . , zn that respects the gate function-
ality, and 0 otherwise.

Note that a proof for this problem is an assignment to z1, . . . , zn, and verifying the
proof amounts to checking that the assignment respects gate functionality at each gate. To
use our local Zero on a Subcube test for CIRCUIT-SAT we need to encode the assignment
and the circuit C algebraically, so that an assignment satisfies C iff a related function is a
low-degree polynomial that vanishes on a small subcube. Representing the assignment and
the circuit algebraically is performed by a process known as arithmetization.

6.2.2 Arithmetization of the Assignment

First we will map an assignment to the gate variables z1, . . . , zn to a low-degree polynomial
over an arbitrary field F

m so that the assignment is encoded by the polynomial.
Let |Hm| = n and choose an arbitrary bijection Hm ↔ [n]. The assignment maps each

gate to either 0 or 1, so it is equivalent to a function A : Hm → {0, 1}. We choose H so
that {0, 1} ⊆ H ⊆ F, and we can write A : Hm → F.

The following (easy-to-prove) algebraic fact will be used in the arithmetization of the
circuit.

39

Fact 6.2.1 (Low-Degree Extension (LDE)). For any function S : Hm → F, there exists a
polynomial Ŝ : F

m → F such that Ŝ|Hm ≡ S and the degree of Ŝ for each variable is at most
|H|. Therefore the total degree of Ŝ is at most m|H|.

Then A : Hm → F is mapped by the low-degree extension to a polynomial Â : F
m → F

and the degree of Â is at most m|H|.

6.2.3 Arithmetization of the Circuit

Our goal is to derive a rule from the circuit C which maps any polynomial Â : F
m → F

to a different low-degree polynomial PÂ : F
3m+3 → F, such that PÂ|H3m+3 ≡ 0 if and only

if Â encodes a satisfying assignment. Note that the existence of such a rule is all we need
to construct a PCP for CIRCUIT-SAT, as it reduces verifying a satisfying assignment to
testing the Zero on a Subcube property.

We will specify the circuit in a slightly different fashion to enable the arithmetization.
Consider a function C̄ : H3m × H3 → {0, 1} that takes three indexes i1, i2, i3 ∈ [n] = Hm

and three bits b1, b2, b3 ∈ {0, 1} ⊆ H and outputs a bit as follows based on the functionality
of the gate whose input variables are zi1 and zi2 and output variable is zi3 .

C̄(i1, i2, i3, b1, b2, b3) =

1, iff the assignment zi1 = b̄1, zi2 = b̄2 zi3 = b̄3, where i1 and i2

are input values to gate i3 and i3 is the output value is an

INVALID configuration for the gate i3

0 otherwise.

Figure 6.2 illustrates the meaning of the arguments of C̄.

Figure 6.2: Setting of gate variables for C̄

Now once again we can use the LDE to map C̄ : H3m+3 → F to a low-degree polynomial
Ĉ : F

3m+3 → F.

40

We are ready to construct the rule we need. Given any q : F
m → F we define P(q) :

F
3m+3 → F such that

P(q)(x1, . . . , xm︸ ︷︷ ︸
x1

, xm+1, . . . , x2m︸ ︷︷ ︸
x2

, x2m+1, . . . , x3m︸ ︷︷ ︸
x3

, z1, z2, z3)

= Ĉ(x1,x2,x3, z1, z2, z3)(q(x1) − z1)(q(x2) − z2)(q(x3) − z3).

Note that if q is low-degree, P(q) is also low-degree.
The motivation for defining P(q) in this way will become clear when we apply the defi-

nition to Â:

P(Â)(i1, i2, i3, b1, b2, b3) = Ĉ(i1, i2, i3, b1, b2, b3)(Â(i1) − b1)(Â(i2) − b2)(Â(i3) − b3). (6.2.1)

It is now an easy case-analysis to observe the following.

Observation 6.2.2. P(Â)|H3m+3 ≡ 0 ⇔ Â is a satisfying assignment.

6.2.4 The PCP Verifier

Given a circuit C, the PCP proof consists of the oracles Â : F
m → F and PÂ : F

3m+3 → F.
The PCP verifier needs to make the following checks:

• Â satisfies the low-degree test

• PÂ satisfies the low-degree test

• (PÂ, Â) satisfies the rule described in (6.2.1).

• PÂ is zero on the subcube Hm.

Given the low-degree test and zero-on-subcube test, it is straightforward to design a PCP
that performs the above tests. The PCP verifier expects as proofs the oracles Â : F

m →
F, PÂ : F

3m+3 → F, q1 : F
3m+3 → F, . . . , q3m+3 : F

3m+3 → F. The oracles q1, . . . , q3m+3

are the auxiliary oracles for performing the zero-on-subcube test. The verifier first picks a
random line ℓ in F

3m+3. It reads the value of all the oracles along the line ℓ. It checks that
the restrictions of all the oracles to the line is low-degree. It then checks that for each point
x on the line l, the “zero-on-subcube” test is satisified, namely

PÂ(x) =

3m+3∑

i=1

qi(x)gH(xi).

It finally checks for each point on that (6.2.1) is satisified. This completes the description
of the PCP verifier.

For want of time, we will skip the analysis of the Robust PCP (see [BGH+06] and
[Har04] for details).

Let us now compute the parameters of the PCP verifier. Here n = Hm is the input
length. Let us assume m = log(n)/ log log(n). We can choose |F| = poly(m|H|). The
PCP verifier makes O(|F|) = poly log n queries and the amount of randomness used is
O(m log(|F|)) = O(log n). The above construction yields a robust PCP of the following
form

41

Theorem 6.2.3. CIRCUIT-SAT has a robust PCP that uses O(log n) randomness, makes
poly log n queries and has (1/poly log n) robust soundness parameter.

Observe that the robust PCP constructed in the above theorem has polylog query com-
plexity and not constant, as we had originally claimed. In the next section, we give a
high level outline of how to reduce number of queries (from polylog to constant) using a
composition technique originally designed by Arora and Safra [AS98].

6.2.5 PCP Composition

In this section, we describe briefly the PCP composition (due to Arora and Safra [AS98])
that helps in reducing the number of queries made by the verifier form poly log(n) to
constant without affecting the other parameters too much. Recall that the PCP verifier
on input x and an oracle access to a proof ϕ, tosses some random coins and based on the
randomness queries some locations. Denote the query locations as the set I. The PCP
verifier evaluates a CIRCUIT-SAT predicate ϕ(Π|I) and accepts or rejects based on the
outcome of the predicate. The PCP constructed in the previous section achieves O(log(n))
randomness and O(poly log(n)) number of queries. We would like to reduce the query
complexity from poly log n to O(1). How do we do this? How does one check that Π|I
satisfies ϕ without reading all of Π|I and only reading a constant number of locations in
Π|I . Arora and Safra suggested that use another PCP to recursively perform this check:
ϕ|I = 1. Let us denote the original PCP verifier as the outer verifier and the one that checks
the predicate ϕ without reading the entire set I as the inner verifier. The inner verifier
gets the circuit ϕ and (Π|I) as inputs. But if it reads all the input bits then the query
complexity is not reduced. Instead, the inner gets as input the circuit and an oracle to the
proof of (Π|I) and it now needs to check that the proof in this location satisfies ϕ. This
requires some care as a simple recursion will not do the job. A composition in the context
of robust PCPs (or equivalently 2-query projective PCPs) was first shown by Moshkovitz
and Raz [MR08]. A more generic and simpler composition paradigm for was then shown
by Dinur and Harsha [DH09]. For want of time, we will skip the details of the composition
and conclude on the note that applying the composition theorem of Dinur and Harsha to
the robust PCP constructed in Theorem 6.2.3, one can obtain the constant query PCP with
arbitrarily small error as claimed before (see [DH09] for the details of this construction).

42

Lecture 7

H̊astad’s 3-Bit PCP

Subhash Khot

Scribe: Dev Desai

21 July, 2009

Previously, we saw the proof of the PCP theorem and its connection to proving inapprox-
imability results. The PCPs that we have seen so far have constant number of queries, but
over a large alphabet. Now we are interested in designing useful PCPs while keeping the
number of query bits low. The purpose of this lecture is to present such a PCP construction,
which leads to optimal inapproximability results for various problems such as MAX-3SAT

and MAX-3LIN.

7.1 Introduction

The PCP theorem and Raz’s parallel repetition theorem [Raz98] give the NP-hardness of a
problem called LABEL COVER (which we will define shortly). This problem is the canonical
starting point for reductions that prove inapproximability results. Such reductions can be
broadly categorized into two:

Direct reductions. These have been successful in proving inapproximability for network
problems, lattice based problems, etc.

Long code based reductions. Salient examples of such results can be found in the paper
of Bellare, Goldreich, and Sudan [BGS98] and H̊astad [H̊as01].

Long code based reductions have been successful for many important problems like
MAX-CUT, albeit with a catch: many of these results depend on conjectures like the Unique

43

Games Conjecture [Kho02], which will be the subject of the next lecture. The focus of this
lecture is to prove the powerful result of H̊astad’s, which can be stated as follows:

Theorem 7.1.1 (H̊astad’s 3-bit PCP [H̊as01]). For every ε, η > 0, NP has a PCP verifier
that uses O(log n) random bits, queries exactly 3 bits to the proof, evaluates a linear predicate
on these 3 bits, and has completeness 1 − ε and soundness 1/2 + η.

We can view the bits in this PCP proof as boolean variables. Then the test of the verifier
can be interpreted as a system of linear equations, each equation corresponding to the triplet
of bits tested for a given random string. Thus, we immediately obtain the hardness for the
MAX-3LIN problem (where an instance of MAX-3LIN is a system of linear equations modulo
2 with at most 3 variables per equation, and we are interested in maximizing the fraction
of equations that can simultaneously be satisfied).

Corollary 7.1.2. For every ε, η > 0, given an instance of MAX-3LIN, it is NP-hard to tell
if 1 − ε fraction of the equations are satisfiable by some assignment or that no assignment
satisfies more than 1/2 + η fraction of the equations.

In other words, getting an efficient algorithm with approximation guarantee better than
(1/2 + η)/(1 − ε), which is ≈ 1/2 (since we can choose ε and η to be arbitrarily small),
for MAX-3LIN is impossible unless P = NP. This result is tight since a random assignment
satisfies half of the equations in expectation. Note that the imperfect completeness in the
result is essential if P 6= NP, since Gaussian elimination can be used to efficiently check
whether any system of linear equations can be completely satisfied.

We now go on to the proof of Theorem 7.1.1. Here, the concepts of Proof composition,
Long codes and Fourier analysis play a pivotal role. We will start with a high-level picture
of the PCP and work our way down to the actual 3-bit test.

7.2 Proof Composition

The standard method to construct a Long code based PCP is by composing an Outer PCP
with an Inner PCP. These two concepts are explained below.

The Outer PCP

The Outer PCP is based on a hard instance of the LABEL COVER problem.

Definition 7.2.1. A LABEL COVER problem L(G(V,W,E), [m], [n], {πvw |(v,w) ∈ E}) con-
sists of:

1. A bipartite graph G(V,W,E) with bipartition V , W .

2. Every vertex in V is supposed to get a label from a set [m] and every vertex in W is
supposed to get a label from a set [n] (n ≥ m).

3. Every edge (v,w) ∈ E is associated with a projection πvw : [n] 7→ [m].

We say that a labeling ϕ : V 7→ [m], ϕ : W 7→ [n] satisfies an edge (v,w) if πvw(ϕ(w)) =
ϕ(v). The goal is to find a labeling that maximizes the number of satisfied edges.

44

Let us define opt(L) to be the maximum fraction of edges that are satisfied by any
labeling. As mentioned earlier, the hardness of LABEL COVER is obtained by combining
the PCP theorem [FGL+96, AS98, ALM+98] with Raz’s parallel repetition theorem [Raz98].

Theorem 7.2.2. For every δ > 0, there exist m and n such that given a LABEL COVER

instance L(G, [m], [n], {πvw}), it is NP-hard to tell if opt(L) = 1 or opt(L) ≤ δ.

It is useful to think of the above theorem as a PCP that makes 2 queries over the
constant (but large) alphabets of size m and n. The verifier just picks an edge at random,
queries the labels of the endpoints of this edge and accepts if and only if these labels satisfy
the edge. This PCP, which is based on a hard instance of LABEL COVER forms our Outer
PCP.

The Inner PCP

The Outer PCP verifier expects some labels as the answers to its two queries. We will
compose this verifier with an Inner PCP verifier, which expects the proof to contain some
encoding (in our case, the Long Code) of the labels, rather than the labels themselves. We
choose to have an encoding of the labels so that we can check just a few bits of the proof
and tell with a reasonable guarantee whether the labeling is valid.

Thus, the Inner verifier expects large bit strings (supposed to be encodings) for each
vertex in G. Let the edge picked by the Outer verifier be (v,w). Then the Inner verifier
checks 1 bit from gv (the supposed encoding of the label of v) and 2 bits from fw (the
supposed encoding of the label of w). Note that the Inner verifier is trying to simulate the
Outer PCP. It needs to check the following two things in one shot:

Codeword Test The strings fw and gv are correct encodings of some j ∈ [n] and i ∈ [m].

Consistency Test These i and j satisfy π(j) = i.

We can therefore convert a PCP which asked 2 large queries to a PCP which asks 3 ‘bit’
queries. We now need to show the following two implications:

1. (Completeness) opt(L) = 1 =⇒ ∃ Proof Pr[acc] ≥ 1 − ε.

2. (Soundness) opt(L) ≤ δ =⇒ ∀ Proofs Pr[acc] < 1
2 + η.

The completeness follows by the design of the PCP and should be regarded as a sanity check
on the construction. The soundness will be proved by contraposition. We will assume that
Pr[acc] ≥ 1/2 + η and then decode the labels to satisfy a lot of edges.

7.3 The Long Code and its Test

H̊astad’s Inner PCP verifier does the codeword test and consistency test in one shot. For
clarity, let us first analyze just the codeword test. We will see how to incorporate the
consistency test in the next section. For the codeword test, we need to look at the particular
encoding that the Inner PCP will use: the Long Code. It is defined below.

45

Definition 7.3.1. The Long Code encoding of j ∈ [n] is defined to be the truth table
of the boolean dictatorship function on the jth coordinate, f : {±1}n 7→ {±1} such that
f(x1, . . . , xn) = xj.

Some observations are in order. Note that we are representing bits by {±1} and not
{0, 1}. This is done just for the sake of clarity, since the calculations done with {±1} are
less messy. Also note that the Long Code is huge. An element j ∈ [n] will require log n bits
to represent, but the Long Code of j requires 2n bits, a doubly-exponential blowup! We
can get away with this because n, the alphabet size, is a constant.

Now for a short aside on Fourier analysis. Recall that for each S ⊆ [n], the Fourier
character χS : {±1}n 7→ {±1} is defined as

χS(x) =
∏

i∈S

xi.

These characters form an orthonormal basis for the set of Boolean functions f : {±1}n 7→
{±1}. All such functions can therefore be written in terms of this basis, called the Fourier
expansion, as

f(x) =
∑

S⊆[n]

f̂(S)χS(x).

where f̂(S) is called the Fourier coefficient of set S. For Boolean functions, these coefficients
satisfy Parseval’s identity, namely

∑
S⊆[n] f̂(S)2 = 1.

Back to the Long Code. In terms of Fourier expansion, the Long Code of element j
is the same as the function χ{j}. Thus it is simple to write down, since the only non-zero

coefficient is f̂({j}) = 1. The Long Code then fits into a general class of functions which
have high Fourier coefficients of low order. This fact will be useful in the soundness analysis
of the test.

On to the codeword test. This will essentially be a linearity test, that is, we will check
whether

f(x + y) = f(x) + f(y).

Since we are in the {±1} domain, this linearity translates to checking whether

f(xy) = f(x)f(y).

We will also introduce a small randomized perturbation in the linearity test. This is done
to improve the overall soundness of the test.

Definition 7.3.2. An ε-perturbation vector is a string of ±1 bits, where each bit is inde-
pendently set to −1 with probability ε and 1 with probability 1 − ε.

The final codeword test is described below. It is a randomized 3-bit linear test that
checks whether the input function is close to a Long Code.

Long Code Test.
Input: Function f : {±1}n 7→ {±1} and error parameter ε.
Test: Pick x, y ∈ {±1}n at random. Pick an ε-perturbation vector µ ∈ {±1}n and let

z = xyµ. Accept if and only if
f(z) = f(x)f(y).

46

Let us analyze the completeness and soundness of this test. We have the following
theorem.

Theorem 7.3.3. Given a truth table of a function f : {±1}n 7→ {±1} and ε > 0, the
following are true for the Long Code Test:

1. If f = χ{j} for some j, then Pr[acc] = 1 − ε.

2. If Pr[acc] ≥ 1/2+η, then f “resembles” a Long Code in the following sense: ∃ S ⊆ [n]
such that |f̂(S)| ≥ η and |S| ≤ O((1/ε) log(1/η)), in other words, there exists a large
Fourier coefficient of low order.

Proof. To prove the completeness part, assume that f = χ{j} for some j ∈ [n], that is, it is
a Long Code. Then the test will “Accept” if and only if

zj = xjyj ⇐⇒ xjyjµj = xjyj ⇐⇒ µj = 1

which happens with probability 1 − ε.
For the soundness analysis, assume that Pr[acc] ≥ 1/2+η. We can write this probability

in terms of the test as

Pr[acc] = Ex,y,µ

[
1 + f(z)f(x)f(y)

2

]
.

This is a standard PCP trick that is used often in analyzing such tests. Substituting for
Pr[acc] and using the Fourier expansion of f ,

1

2
+ η ≤ 1

2
+

1

2
Ex,y,µ[f(xyµ)f(x)f(y)]

2η ≤ Ex,y,µ

∑

S⊆[n]

f̂(S)χS(xyµ)

∑

T⊆[n]

f̂(T)χT (x)

∑

U⊆[n]

f̂(U)χU (y)

=
∑

S,T,U

f̂(S)f̂(T)f̂(U) Ex,y,µ [χS(xyµ)χT (x)χU (y)]

=
∑

S,T,U

f̂(S)f̂(T)f̂(U) Ex,y,µ [χS(x)χS(y)χS(µ)χT (x)χU (y)]

=
∑

S,T,U

f̂(S)f̂(T)f̂(U) Ex [χS(x)χT (x)] Ey [χS(y)χU (y)] Eµ [χS(µ)] .

We can simplify the last expression by using orthonormality of the χ’s to argue that

Ex[χS(x)χT (x)] = Ex

∏

i∈S

xi

∏

j∈T

xj

 =
∏

i∈S∆T

Ex[xi] =

{
1 if S = T,

0 otherwise

where S∆T stands for the symmetric difference between sets S and T . Thus the terms in
the summation will vanish unless S = T = U . We then get

2η ≤
∑

S

f̂(S)3 Eµ[χS(µ)]. (7.3.1)

47

As an aside, the Long Code Test without perturbations was analyzed long before H̊astad by
Blum, Luby and Rubinfeld [BLR93]. In that case, we just get

∑

S

f̂(S)3 ≥ 2η =⇒ |f̂max|
∑

S

f̂(S)2 ≥ 2η =⇒ ∃ large |f̂ | (since
∑

f̂2 = 1).

Now, with perturbation, we have

Eµ [χS(µ)] = Eµ

[
∏

i∈S

µi

]

= [1(1 − ε) + (−1)ε]|S| = (1 − 2ε)|S|.

Substituting this in Inequality (7.3.1), we get

2η ≤
∑

S

f̂(S)3(1 − 2ε)|S|.

We can again think of the above sum as a convex combination (since
∑

f̂2 = 1). This
implies that there exists an S such that f̂(S)(1 − 2ε)|S| ≥ 2η. Thus we have

Pr[acc] ≥ 1

2
+ η =⇒ ∃ S : |f̂(S)| ≥ 2η and |S| ≤ O

(
1

ε
log

1

η

)
.

The Long Code test can be thought of as an analog of the concept of gadget in NP

reductions. In particular, Theorem 7.3.3 is very important and is the crux of the PCP. We
will prove similar results in the analysis of later tests.

7.4 Incorporating Consistency

Let us restate what we want from our 3-bit test. Recall that the inputs to the Inner PCP
verifier are two supposed Long codes, g and f , of two vertices v and w, and the projection
π between them. We have to check two things in one shot:

1. g and f are Long codes of some i ∈ [m] and j ∈ [n].

2. π(j) = i.

We are going to do this by reading 1 bit from g and 2 bits from f and applying a 3-bit
linear test similar to the Long code test.

Consistency Test.
Input: Functions g : {±1}m 7→ {±1} and f : {±1}n 7→ {±1}, projection π : [n] 7→ [m],

and error parameter ε.
Test: Pick x ∈ {±1}m, y ∈ {±1}n at random. Pick an ε-perturbation vector µ : {±1}n.

Let z = (x ◦ π)yµ. Accept if and only if

f(z) = g(x)f(y).

48

In the above test, the vector (x ◦ π) is defined as (x ◦ π)j = xπ(j) ∀ 1 ≤ j ≤ n. Such a
definition is needed because x and y are vectors of different sizes.

The analysis of the above test is similar to that of the Long Code test. Hence, we will
skip a rigorous proof and state only the important details. The completeness is simple to
analyze.

For the soundness analysis, we can imagine a restricted case where n = m, π = id

(identity permutation), and f = g. Then the test is exactly the 3-bit Long Code test that
we saw in the previous section and we get

Pr[acc] ≥ 1

2
+η

Theorem 7.3.3−−−−−−−−−→
∑

S⊆[n]

|S|≤O(1
ε

log 1
η
)

f̂(S)3 ≥ η
Cauchy-Schwarz−−−−−−−−−−→

∑

S⊆[n]

|S|≤O(1
ε

log 1
η
)

f̂(S)4 ≥ η2.

Now if we have different f and g, one can verify by analysis similar to that in Theorem 7.3.3
that instead of the above inequality, we would get

∑

S⊆[n]

|S|≤O(1
ε

log 1
η
)

ĝ(S)2f̂(S)2 ≥ η2.

Further, now if π 6= id and n 6= m, then we would end up with the inequality in the following
theorem.

Theorem 7.4.1. The following are true for Consistency Test(g, f, π, ε):

1. If f = χ{j}, g = χ{i} and π(j) = i, then Pr[acc] = 1 − ε.

2. If Pr[acc] ≥ 1/2 + η, then f and g are correlated in the following sense:

∑

S⊆[m],T⊆[n]
|S|,|T |≤O(1/ε log(1/η))

S,T correlated by π

ĝ(S)2f̂(T)2 ≥ η2

where “S, T correlated by π” means that there exist i ∈ S, j ∈ T such that π(j) = i.

We are now ready to describe H̊astad’s composed PCP verifier.

H̊astad’s 3-bit PCP.
Input: Hard instance of LABEL COVER, L(G(V,W,E), [m], [n], {πvw}) (given by Theorem 7.2.2)

and error parameter ε.
Verifier: Pick edge (v,w) ∈ E at random. Let gv and fw be the supposed Long codes of

the two vertices. Run Consistency Test(gv , fw, πvw, ε).

The following theorem gives the completeness and soundness of the verifier.

Theorem 7.4.2. Given a hard instance of LABEL COVER, L, H̊astad’s PCP guarantees

1. (Completeness) If opt(L) = 1, then there exists a proof for which Pr[acc] ≥ 1 − ε.

49

2. (Soundness) If Pr[acc] ≥ 1/2 + 2η, then opt(L) ≥ ε2η3/ log2(1/η), that is, there is a
labeling to L that satisfies at least ε2η3/ log2(1/η) fraction of edges.

Proof. For the completeness part, we can assume that the proof contains correct encodings
on correct labels. Then by Theorem 7.4.1, the Verifier accepts with probability 1 − ε on
every choice of edge. Therefore, the overall acceptance probability also remains 1 − ε.

Now for the soundness part. If Pr[acc] ≥ 1/2 + 2η, then by an averaging argument,
for at least η fraction of the edges (v,w) ∈ E, Consistency Test(gv , fw, πvw, ε) accepts with
probability at least 1/2 + η.

Fix any such good edge. Then by Theorem 7.4.1, we have

∑

|S|,|T |≤O(1/ε log(1/η))
∃ i∈S,j∈T : π(j)=i

ĝv(S)2f̂w(T)2 ≥ η2. (7.4.1)

We will now define labels for vertices v and w. First, we pick sets S ⊆ [m] and T ⊆ [n]
with probability ĝv(S)2 and f̂w(T)2 respectively. Next, we pick labels i ∈ S and j ∈ T at
random. This is a randomized labeling and by the probabilistic method, the argument goes
through. In expectation, at least

η︸︷︷︸
Pr[Pick

good edge]

· η2

︸︷︷︸
Pr[Pick correlated S,T]

by Inequality 7.4.1

· ε2

log2(1/η)︸ ︷︷ ︸
Pr[Pick i∈S,j∈T

s.t. π(j)=i]

fraction of label-cover edges are satisfied.

Finally, observe that if we set δ = cε2η3/ log2(1/η), then Theorem 7.2.2 and Theo-
rem 7.4.2 together prove Theorem 7.1.1.

7.5 Concluding Remarks

In this lecture, we have seen and analyzed H̊astad’s powerful 3-bit PCP. There are a few
subtleties in the construction of this PCP that are worth mentioning. The first subtlety, that
we have already seen in the Introduction, is that we have to sacrifice perfect completeness
if we want our Verifier to have linear predicates.

The second issue is that any linear test can be satisfied if everything is 0 (or +1 in our
case). Moreover, in the soundness analysis of Theorem 7.4.2, the sets S and T that are
chosen by the probability distributions {ĝv(S)2} and {f̂w(T)2} respectively should not be
empty. This problem is taken care by an operation called folding. For more information,
the reader can look at the references below.

Some good references for more information on H̊astad’s PCP are Chapter 22 in Arora
and Barak’s textbook [AB09], Khot’s article on Long code based PCPs [Kho05] and H̊astad’s
original paper [H̊as01].

50

Lecture 8

Semidefinite Programming and Unique Games

Moses Charikar

Scribe: Alantha Newman

21 July, 2009

8.1 Unique Games

The topic of Unique Games has generated much interest in the past few years. The Unique
Games Conjecture was posed by Khot [Kho02]. We will discuss the associated optimization
problem and the algorithmic intuition and insight into the conjecture, as well as the limits
of these algorithmic techniques. Finally, we mention the amazing consequences implied for
many optimization problems if the problem is really as hard as conjectured.

We now define the Unique Games problem. The input is a set of variables V and a
set of k labels, L, where k is the size of the domain. Our goal is to compute a mapping,
ℓ : V → L, satisfying certain constraints that we now describe. Let E denote a set of
pairs of variables, {(u, v)} ⊂ V × V . For each (u, v) ∈ E, there is an associated constraint
represented by πuv, indicating that ℓ(v) should be equal to πuv(ℓ(u)); we assume that the
constraint πvu is the inverse of the constraint πvu i.e, πuv = π−1

vu . Thus, our goal is to
compute the aforementioned mapping, ℓ : V → L, so as to maximize the number of satisfied
constraints.

Each constraint, πuv, can be viewed as a permutation on L. Note that this permutation
may be different for each pair (u, v) ∈ E. For a pair (u, v) ∈ E, if v is given a particular
label from L, say ℓ(v), then there is only one label for u that will satisfy the constraint
πuv. Specifically, ℓ(u) should equal πvu(ℓ(v)). Hence, the “unique” in Unique Games. The
practice of calling this optimization problem a unique “game” stems from the connection
of this problem to 2-prover 1-round games [FL92]. The Unique Games problem is a special
case of Label Cover (discussed in other lectures in the workshop), in which each constraint

51

forms a bijection from L to L. Having such a bijection turns out to be useful for hardness
results.

8.2 Examples

We will refer to E as a set of edges, since we can view an instance of Unique Games as
a graph G = (V,E) in which each edge (u, v) ∈ E is labeled with a constraint πuv. We
now give some specific examples of optimization problems that are special cases of Unique
Games.

8.2.1 Linear Equations Mod p

We are given a set of equations in the form xi − xj ≡ cij (mod p). The goal is to assign
each variable in V = {xi} a label from the set L = [0, 1, . . . p − 1] so as to maximize the
number of satisfied equations. Note that each constraint is a bijection.

8.2.2 MAXCUT

Given an undirected graph G = (V,E), the Max Cut problem is to find a bipartition of
the vertices that maximizes the weight of the edges with endpoints on opposite sides of the
partition.

We can represent this problem as a special case of Linear Equations mod p and therefore
as a special case of Unique Games. For each edge (i, j) ∈ E, we write the equation xi−xj ≡
1 (mod 2). Note that the domain size is two, since there are two possible labels, 0 and 1.

8.3 Satisfiable vs Almost Satisfiable Instances

If an instance of Unique Games is satisfiable, it is easy to find an assignment that satisfies
all of the constraints. Can you see why? Essentially, the uniqueness property says that if
you know the correct label of one variable, then you know the labels of all the neighboring
variables. So we can just guess all possible labels for a variable; at some point your guess
is correct and this propagates correct labels to all neighbors, and to their neighbors, and
so on. This is a generalization of saying that if a graph is bipartite (e.g. all equations in
the Max Cut problem are simultaneously satisfiable), then such a bipartition can be found
efficiently. So when all constraints in an instance of Unique Games are satisfiable, this is
an “easy” problem.

In contrast, the following problem has been conjectured to be “hard”: If 99% of the
constraints are satisfiable, can we satisfy 1% of the constraints? The precise form of the
conjecture is known as the Unique Games Conjecture [Kho02]: For all small constants
ε, δ > 0, given an instance of Unique Games where 1 − ε of the constraints are satisfied, it
is hard to satisfy a δ fraction of satisfiable constraints, for some k > f(ε, δ), where k is the
size of the domain and f is some function of ε and δ.

How does f grow as a function of ε and δ? We claim that f(ε, δ) > 1/δ. This is because
it can easily be shown that we can satisfy a 1/k fraction of the constraints: Randomly
assigning a label to each variable achieves this guarantee. Thus, in words, the conjecture is

52

that for a sufficiently large domain size, it is hard to distinguish between almost satisfiable
and close to unsatisfiable instances.

8.3.1 Almost Satisfiable Instances of MAXCUT

We can also consider the Max Cut problem from the viewpoint of distinguishing between al-
most satisfiable and close to unsatisfiable instances. However, for this problem, a conjecture
as strong as that stated above for general Unique Games is clearly false. This is because we
can always satisfy at least half of the equations. (See Sanjeev’s lecture.) We now consider
the problem of satisfying the maximum number of constraints given that a (1 − ε) fraction
of the constraints are satisfiable. We write the standard semidefinite programming (SDP)
relaxation in which each vertex u (with a slight abuse of notation) is represented by a unit
vector, u.

max
∑

(u,v)∈E

1 − u · v
2

u · u = 1 ∀u ∈ V

u ∈ R
n ∀u ∈ V.

For a fixed instance of the Max Cut problem, let OPT denote the fraction of constraints
satisfied by an optimal solution, and let OPTSDP denote the value of the objective function
of the above SDP on this instance. If OPT ≥ (1− ε)|E|, then OPTSDP ≥ (1− ε)|E|, since
OPTSDP ≥ OPT . In Lecture 1 (Sanjeev’s lecture), it was shown that using the random
hyperplane rounding of Goemans-Williamson [GW95], we can obtain a .878-approximation
algorithm for this problem. We will now try to analyze this algorithm for the case when
OPT is large, e.g. at least (1 − ε)|E|. From a solution to the above SDP, we obtain a
collection of n-dimensional unit vectors, where n = |V |. We choose a random hyperplane,
represented by a vector r ∈ N(0, 1)n (i.e. each coordinate is chosen according to the normal
distribution with mean 0 and variance 1). Each vector u ∈ V has either a positive or a
negative dot product with the vector r, i.e r · u > 0 or r · u < 0. Let us now analyze what
guarantee we can obtain for the algorithm in terms of ε.

As previously stated, we have the following inequality for the SDP objective function:

∑

(u,v)∈E

(1 − u · v)

2
≥ (1 − ε)|E|.

Let θ′uv represent the angle between vectors u and v, i.e. arccos(u · v). Let θuv denote the
angle (π − θ′uv). Then we can rewrite the objective function of the SDP as:

∑

(u,v)∈E

1 + cos(θuv)

2
.

53

Further rewriting of the objective function results in the following:

∑

(u,v)∈E

1 + cos(θuv)

2
=

∑

(u,v)∈E

1 − 1 − cos (θuv)

2

= |E| −
∑

(u,v)∈E

1 − cos (θuv)

2

= |E| −
∑

(u,v)∈E

sin2 (
θuv

2
)

≥ |E| − ε|E|.
We say that vertices u and v are “cut” if they fall on opposite sides of the bipartition after
rounding.

Pr[u and v cut] =
θ′uv

π
= 1 − θuv

π
.

The expected size of S—the number of edges cut in a solution—is:

E[S] =
∑

(u,v)∈E

1 − θuv

π

= |E| −
∑

(u,v)∈E

θuv

π
.

Assume for all (u, v) ∈ E that sin2 (θuv
2) = ε. Then sin (θuv

2) =
√

ε. For small θ, we have
that sin (θ) ≈ θ. Therefore, θuv/2 ≈ √

ε.
Thus, the expected value E[S] ≥ |E|(1 − c

√
ε) for some constant c. In other words, if

we are given a Max Cut instance with objective value (1 − ε)|E|, we can find a solution of
size (1 − c

√
ε)|E|. In other words, an almost satisfiable instance can be given an almost

satisfying assignment, although the assignment has a weaker guarantee.

8.4 General Unique Games

What happens for a large domain? How do we write an SDP for this problem? Before we
had just one vector per vertex. Now for each variable, we have k values. So we have a vector
for each variable and for each value that it can be assigned. First, we will write a {0, 1}
integer program for Unique Games and then we relax this to obtain an SDP relaxation.

8.4.1 Integer Program for Unique Games

Recall that L is a set of k labels. For each variable u and each label i ∈ L, let ui be an
indicator variable that is 1 if u is assigned label i and 0 otherwise. Note that the expression
in the objective function is 1 exactly when a constraint πuv is satisfied.

max
∑

(u,v)∈E

∑

i∈L

ui · vπuv(i)

∑

i∈L

ui = 1 ∀u ∈ V.

54

Now we move to a vector program. The objective function stays the same, but we can
add some more equalities and inequalities to the relaxation that are valid for an integer
program. Below, we write quadratic constraints since our goal is ultimately to obtain a
quadratic program.

∑

i∈L

ui · ui = 1 ∀u ∈ V, i ∈ L,

ui · uj = 0 ∀u ∈ V, i 6= j ∈ L.

Additionally, we can also add triangle-inequality constraints on triples of vectors, {ui, vj , wh}
for u, v,w ∈ V and i, j, h ∈ L:

||ui − wh||2 ≤ ||ui − vj||2 + ||vj − wh||2, (8.4.1)

||ui − vj||2 ≥ ||ui||2 − ||vj ||2. (8.4.2)

These constraints are easy to verify for 0/1 variables, i.e. for integer solutions. Note
that these constraints are not necessary for the integer program, but they make the SDP
relaxation stronger.

8.4.2 Trevisan’s Algorithm

We now look at an algorithm due to Trevisan [Tre08]. Recall that if we know that every
constraint in a given instance is satisfiable, then we can just propagate the labels and obtain
a satisfiable assignment. The algorithm that we discuss is roughly based on this idea.

How can we use a solution to the SDP relaxation to obtain a solution that satisfies many
constraints? Suppose that OPT is |E| and consider two vertices u and v connected by an
edge. In this case, the set of k vectors corresponding to u is the same constellation of k
vectors corresponding to vertex v, possibly with a different labeling. If OPT is (1 − ε)|E|,
then although these two constellations may no longer be identical, they should be “close”.
The correlation of the vectors corresponds to the distance, i.e. high correlation corresponds
to small distance. Thus, we want to show that the vector corresponding to the label of the
root vertex r is “close” to other vectors, indicating which labels to assign the other vertices.

An Algorithm for Simplified Instances

Consider the following “simplified instance”. Recall that the constraint graph consists of
a vertex for each variable and has an edge between two variables if there is a constraint
between these two variables. Suppose the constraint graph has radius d: there exists a
vertex r such that every variable is a distance at most d from vertex r. The following
lemma can be proved using the ideas discussed above.

Lemma 8.4.1. If every edge contributes 1− ε/8(d + 1) to the SDP objective value, then it
is possible to efficiently find an assignment satisfying a (1 − ε)-fraction of the constraints.

We now give the steps of the rounding algorithm.

55

Rounding the SDP

(i) Find root vertex, r, such that every other vertex is reachable from r by a path
of length at most d.

(ii) Assign label i to r with probability ||ri||2.

(iii) For each u ∈ V , assign u label j, where j is the label that minimizes the
quantity ||uj − ri||2.

As mentioned earlier, the intuition for this label assignment is that uj is the vector
that is “closest” to ri. We now prove the following key claim: For each edge (u, v), the
probability that constraint πuv is satisfied is at least 1 − ε. In particular, recall that edge
(u, v) is mislabeled if ℓ(v) 6= πuv(ℓ(u)). Thus, we want to show that the probability that
edge (u, v) is mislabeled is at most ε.

Since r is at most a distance d from all other vertices, a BFS tree with root r has the
property that each u has a path to r on the tree of distance at most d. Fix a BFS tree
and consider the path from r to u: r = u0, u1, u2, . . . , ut−1, ut = u, where t ≤ d. Let πu1

denote the permutation πu0,u1, and recursively define πuk as the composition of permutations
(πuk,uk−1) · (πuk−1). Let πv = (πuv) · (πu). We now compute the probability that vertex u is
assigned label πu(i) and that vertex v is assigned label πv(i), given that r is assigned label i.
Note that if both these assignments occur, then edge (u, v) is satisfied. (Since edge (u, v)
may also be satisfied with another assignment, we can think of our calculation as possibly
being an underestimate on the probability that edge (u, v) is satisfied.)

Let A(u) denote the label assigned to vertex u by the rounding algorithm. We will show:

Pr[A(u) = πu(i)] ≥ 1 − ε

2
and Pr[A(v) = πv(i)] ≥ 1 − ε

2
.

This implies that the probability that constraint πuv is satisfied is at least 1 − ε. Now we
compute the probability that A(u) 6= πu(i). Suppose that uj for j 6= πu(i) is closer to vector
ri than uπu(i) is. In other words, suppose:

||uj − ri||2 ≤ ||uπu(i) − ri||2. (8.4.3)

Let Bu be the set of labels such that if r is assigned label i ∈ Bu, then u is not assigned
label πu(i). Note that label j belongs to Bu iff inequality (8.4.3) holds for j. Thus, the
probability that u is not labeled with πu(i) is exactly:

Pr[A(u) 6= πu(i)] =
∑

i∈Bu

||ri||2.

One can verify that if there is some label j such that inequality (8.4.3) holds, then the
quantity ||ri||2 is at most 2||ri − uπu(i)||2. This proof makes use of inequalities from the
SDP, (8.4.1) and (8.4.2), as well as inequality (8.4.3). (See Lemma 8.6.1 from [Tre08],
which we include in the Appendix.) Recall that each edge in the graph (and thus each
edge on the path from r to u in the BFS tree) contributes at most 1 − ε/8(d + 1) to the

56

objective value. By triangle inequality, this implies that
∑

i∈L ||ri − uπu(i)||2 ≤ ε/4. Thus,
we conclude:

Pr[A(u) 6= πu(i)] =
∑

i∈Bu

||ri||2

≤ 2
∑

i∈Bu

||ri − uπu(i)||2

≤ 2
∑

i∈L

||ri − uπu(i)||2

≤ ε

2
.

Similarly, we conclude that Pr[A(v) 6= πv(i)] ≤ ε/2, which implies that the probability that
constraint πuv is not satisfied is at most ε.

Shift Invariant Instances

In the case of Linear Equations mod p, we can add more constraints to the SDP relaxation,
which allow for a simplified analysis of the rounding algorithm. For any assignment of labels,
we can shift each of the labels by the same fixed amount, i.e, by adding a value k ∈ L to
each label, and obtain an assignment with the same objective value. This property of a
solution has been referred to as shift invariance. In these instances, the following are valid
constraints. Note that p = |L|.

||ui||2 =
1

p
u ∈ V, i ∈ L,

ui · vj = ui+k · vj+k u, v ∈ V, i, j, k ∈ L.

In this case, we obtain a stronger version of Lemma 8.4.1.

Lemma 8.4.2. In a shift invariant instance in which every edge contributes more than
1−1/2(d+1) to the SDP objective value, it is possible to efficiently find an assignment that
satisfies all of the constraints.

We will show that in this case, the vector ri is closer to vector uπu(i) than to vector
uj for any label j 6= πu(i). In other words, ri · uπu(i) > ri · uj for all j ∈ L. If each edge
contributes more than 1− 1/2(d+1) to the objective value, then ||ri −uπu(i)||2 < 1/p. This
implies that ri · uπu(i) > 1/2p. By triangle inequality, we have:

||uj − uπu(i)||2 ≤ ||uj − ri||2 + ||ri − uπu(i)||2
2

p
≤ 2

p
− 2ri · uj +

1

p
⇒

ri · uj ≤ 1

2p
.

Assuming that vector uj is closer to ri than vector uπu(i), we obtain the following contra-
diction:

1

2p
< ri · uπu(i) ≤ ri · uj ≤ 1

2p
.

57

Note that in the case of shift invariance, r is assigned each label from L with equal
probability. Because of shift invariance, it does not actually matter which label r is assigned.
Thus, we can just assign r a label i arbitrarily (we no longer need randomization) and then
proceed with the rest of the SDP rounding algorithm.

Extension to General Instances

Applying this SDP rounding to general graphs may not yield such good results as in Lemmas
8.4.1 and 8.4.2, since the radius of an arbitrary graph can be large, and the objective values
of the SDP relaxation would therefore have to be very high for the lemmas to be applicable.
In order to apply these lemmas, we break the graph into pieces, each with a radius of no
more than O(log n/ε). Doing this requires throwing out no more than an ε-fraction of the
constraints. The following lemma is originally due to Leighton and Rao [LR99] and can
also be found in [Tre08].

Lemma 8.4.3. For a given graph G = (V,E) and for all ε > 0, there is a polynomial time
algorithm to find a subset of edges E′ ⊆ E such that |E′| > (1− ε)|E|, and every connected
connected component of E′ has diameter O(log |E|/ε).

Using this lemma, we obtain the following guarantee for general instances: Given an
instance for which OPT is at least (1 − cε3/ log n)|E|, we can efficiently find a labeling
satisfying a 1 − ε fraction of the constraints. Note that c is an absolute constant. For shift
invariant instances, we can satisfy (1 − ε)|E| of the constraints for an instance where OPT
is at least (1 − cε2/ log n)|E|.

Given a graph, we remove the ε
3 fraction of constraints that contribute the least to the

objective value. This leaves us with at least (1−ε/3)|E| constraints that each contributes at
least 1−3cε2/ log n (or 1−3cε/ log n for shift invariant instances) to the objective value. We
can apply Lemma 8.4.1 (or Lemma 8.4.2) with d = log n/ε, satisfying at least (1− 2ε/3)|E|
constraints (or (1 − ε/3)|E| constraints).

8.5 Improving the Approximation Ratio

Algorithms with improved approximation guarantees for Unique Games have been presented
in [GT06a, CMM06]. The latter work gives an algorithm with the following guarantee:
Given an instance of Unique Games with a domain size k for which OPT is at least (1 −
ε)|E|, the algorithm produces a solution that satisfies at least max{1−

√
ε log k, k−ε/(2−ε)}

fraction of the constraints. Furthermore, it has been shown that the existence of an efficient
algorithm that can distinguish between instances in which (1 − ε)|E| constraints can be
satisfied and those at which less than k−ε/2 constraints can be satisfiable, would disprove
the Unique Games Conjecture [KKMO07]. Moreover, it is sufficient to refute the conjecture
if this algorithm works only for the special case of Linear Equations mod p. Thus, focusing
on shift invariant instances is a reasonable approach.

Additionally, the Unique Games problem has been studied for cases in which the con-
straint graph is an expander; in an instance in which OPT is at least (1 − ε)|E|, one can
efficiently find a solution satisfying at least 1−O(ε

λ) fraction of the constraints, where λ is
a function of the expansion of the graph [AKK+08, MM09].

58

8.6 Consequences

The interest in the Unique Games Conjecture has grown due to the many strong, neg-
ative consequences that have been proved for various optimization problems. Assuming
the Unique Games Conjecture, it has been shown that the Goemans-Williamson algo-
rithm for Max Cut (presented in Sanjeev’s lecture) achieves the optimal approximation
ratio [KKMO07]. More surprisingly, there are many other NP-complete optimization prob-
lems for which the best-known approximation guarantees are obtained via extremely simple
algorithms. Nevertheless, no one has been able to find algorithms with improved approx-
imation guarantees, even when resorting to sophisticated techniques such as linear and
semidefinite programming. Such optimization problems include the Minimum Vertex Cover
problem and the Maximum Acyclic Subgraph problem, for which the best-known approx-
imation factors are 1/2 and 2, respectively. If the Unique Games Conjecture is true, then
these approximation ratios are tight [KR08, GMR08]. This phenomena has been investi-
gated for several other optimization problems as well. A recent result shows that for a
whole class of constraint satisfaction problems, which can be modeled using a particular
integer program, the integrality gap of a particular SDP relaxation is exactly equal to its
approximability threshold under the Unique Games Conjecture [Rag08].

Appendix

We include the following lemma from [Tre08] and its proof:

Lemma 8.6.1. Let r,u,v be vectors such that: (i) u · v = 0, (ii) ||r − u||2 ≥ ||r − v||2,
and (iii) the vectors r,u,v satisfy the triangle inequality constraints from the SDP. Then
||r − u||2 ≥ 1

2 ||r||2.

Proof. There are three cases:

1. If ||u||2 ≤ 1
2 ||r||2, then by (8.4.2), we have:

||r − u||2 ≥ ||r||2 − ||u||2 ≥ 1

2
||r||2.

2. If ||v||2 ≤ 1
2 ||r||2, then by (8.4.1), and subsequently (8.4.2), we have:

||r − u||2 ≥ ||r− v||2 ≥ ||r||2 − ||v||2 ≥ 1

2
||r||2.

3. If ||u||2, ||v||2 ≥ 1
2 ||r||2, then from (8.4.1) and assumption (ii), we have:

||v − u||2 ≤ ||v − r||2 + ||r − u||2 ≤ 2||r − u||2.

By Pythagoras theorem and by orthogonality of u and v (assumption (i)), we have:

||v − u||2 = ||v||2 + ||u||2.

59

Finally, we have:

||r − u||2 ≥ 1

2
||v − u||2 =

1

2
||v||2 +

1

2
||u||2 ≥ 1

2
||r||2.

60

Lecture 9

Unique Games Hardness for MAXCUT

Subhash Khot

Scribe: Igor Gorodezky

21 July, 2009

9.1 Introduction: MAXCUT and Unique Games

In this lecture we sketch the proof of one of the more remarkable consequences of the Unique
Games Conjecture: MAX-CUT is inapproximable to any constant better than α, where

α = min
−1≤ρ≤1

2

π

arccos(ρ)

1 − ρ
≈ .87856 (9.1.1)

is the approximation ratio of the Goemans-Williamson algorithm.

9.1.1 The Goemans-Williamson algorithm

Recall that given a graph G = (V,E,w) with edge weights wij ≥ 0, the MAX-CUT problem
asks for S ⊆ V that maximizes

∑
i∈S,j /∈S wij (we call this the weight of the cut induced by

S). We will write mc(G) for the maximum weight of a cut in G.
MAX-CUT is NP-hard. The best known approximation algorithm for MAX-CUT is due

to Goemans and Williamson [GW95] and is as follows: given G = (V,E,w), first solve the
MAX-CUT SDP

max
∑

ij

wij
1 − vi · vj

2
(9.1.2)

||vi||2 = 1, i = 1, . . . , n

vi ∈ R
n, i = 1, . . . , n

61

to get a set of unit vectors v1, . . . , vn in R
n. Then, uniformly sample a hyperplane through

the origin and define S ⊆ V to be the set of i such that vi lies “above” this hyperplane.
We saw in Sanjeev’s lecture (Lecture 1) that the Goemans-Williamson algorithm gives,

in expectation, an (α − ε)-approximation for any ε > 0 (this additive error of ε stems
from the fact that semidefinite programs must be solved to within some fixed, arbitrarily
small accuracy). The algorithm can be derandomized (see [MH99]) to yield a deterministic
(α − ε)-approximation to MAX-CUT.

A series of subsequent hardness results culminated in H̊astad’s PCP-based proof in
[H̊as01] that MAX-CUT is NP-hard to approximate to within 16/17 ≈ .941. Then, roughly
a decade after the publication of the Goemans-Williamson algorithm, Khot, Kindler, Mossel
and O’Donnell proved in [KKMO07] that, assuming the Unique Games Conjecture, it is NP-
hard to approximate MAX-CUT to within any factor greater than α. This suggests, as Khot
et al. note, that the geometric nature of the Goemans-Williamson algorithm is intrinsic to
the MAX-CUT problem.

9.1.2 Label Cover and Unique Games

The inapproximability of MAX-CUT is conditional on the Unique Games Conjecture, which
we state in this section.

A unique game L is a bipartite graph with left-side vertex set V, right-side vertex set
W, edge set E, and a set of labels of size M . Each edge (v,w) has an associated constraint
function πv,w which is a permutation of [M] (i.e. a bijection from the set of labels to
itself). We will sometimes refer to a unique game with these parameters in the longhand
L(V,W,E, [M], {πv,w}).

A labeling of a unique game L is an assignment of a label from [M] to each vertex of L.
A labeling satisfies the edge (v,w) if πv,w maps the label of w to the label of v. We define

opt(L) = max{ r | there exists a labeling of L that satisfies r|E| edges}.

The unique Label Cover problem with parameter δ is the problem of deciding, given a unique
game L(V,W,E, [M], {πv,w}), whether opt(L) ≥ 1 − δ or opt(L) ≤ δ. That is, given L, we
are asked to decide whether there exists a labeling that satisfies nearly all edge constraints,
or whether no labeling can satisfy more than a tiny fraction of them. We will write this
decision problem as ULC(δ).

Intuition tells us that computing opt(L) should be a hard problem, but what about
ULC(δ)? That is, if we are asked not to compute opt(L) but simply to decide whether it is
very large or very small, does the problem become easier? The Unique Games Conjecture
claims that the answer is no.

The following is (a slightly weakened form of) the conjecture, first stated by Khot in
[Kho02].

Conjecture 9.1.1 (Unique Games Conjecture, [Kho02]). For any δ > 0 there exists a
constant M such that it is NP-hard to decide ULC(δ) on instances with a label set of size
M .

62

Figure 9.1: A unique game with M = 3. The constraint π is associated with the highlighted
edge. The edge is satisfied by the labeling in the figure if π(3) = 2.

9.1.3 The Main Result

We are ready to present the main result of [KKMO07]. This result can be stated in the form
of a PCP for the ULC(δ) problem, by which we mean a probabilistically checkable proof
system such that given a unique game L and a proof, if opt(L) ≥ 1 − δ then the verifier
accepts with high probability c (completeness), while if opt(L) ≤ δ then the verifier accepts
with low probability s (soundness). As usual, the verifier only uses O(log n) random bits
on an instance of size n.

Theorem 9.1.2. For every ρ ∈ (−1, 0) and ε > 0 there exists δ > 0 such that there is a
PCP for ULC(δ) in which the verifier reads two bits from the proof and accepts iff they are
unequal, and which has completeness

c ≥ 1 − ρ

2
− ε

and soundness

s ≤ 1

π
arccos(ρ) + ε.

Before sketching the proof of this theorem in Section 9.3, let us see how it implies the
inapproximability of MAX-CUT. Recall that mc(G) is the maximum weight of a cut in G.

Corollary 9.1.3. For every ρ ∈ (−1, 0) and ε > 0 there exists δ > 0 and a polynomial-time
reduction from an instance L of ULC(δ) to an instance G = (V,E,w) of MAX-CUT such
that

opt(L) ≥ 1 − δ =⇒ mc(G) ≥ 1 − ρ

2
− ε

opt(L) ≤ δ =⇒ mc(G) ≤ 1

π
arccos(ρ) + ε.

Proof. Given ρ and ε, let δ be the same as in Theorem 9.1.2. Given an instance L of
ULC(δ), consider the PCP given by that theorem. Define the graph G to have the bits of

63

the proof as vertices,1 and create an edge between two bits if there is a non-zero probability
of that pair of bits being sampled by the verifier. Finally, set w to be the trivial weight
function that is 1 on all edges.

Observe that a proof, which is an assignment of a value in {−1, 1} to the bits, corresponds
to a cut in G, and the number of edges crossing this cut is precisely the probability that
this proof is accepted by the verifier. The claim now follows from the completeness and
soundness of the PCP.

Assuming the Unique Games Conjecture, for any δ > 0 there is some constant M such
that it is NP-hard to decide ULC(δ) on instances with a label set of size M . Now, by
standard arguments, Corollary 9.1.3 implies that it is NP-hard to approximate MAX-CUT
to within

arccos(ρ)/π + ε

(1 − ρ)/2 − ε
>

arccos(ρ)/π

(1 − ρ)/2

for any ρ ∈ (−1, 0). Therefore, MAX-CUT is hard to approximate to within any constant
larger than

min
−1≤ρ≤0

2

π

arccos(ρ)

1 − ρ
= min

−1≤ρ≤1

2

π

arccos(ρ)

1 − ρ
= α

which is the promised inapproximability result.
Let us turn our attention, then, to proving Theorem 9.1.2. The proof will rely on a

highly nontrivial result in boolean Fourier analysis that we state in the next section.

9.2 Majority is Stablest

The proof of Theorem 9.1.2 makes crucial use of the Majority is Stablest (MIS) theorem,
which is an extremal result in boolean Fourier analysis. In this section we state this theorem
after defining the necessary concepts.

We will use the common convention that bits take value in {−1, 1} rather than {0, 1}
(in particular, we identify x ∈ {0, 1} with y ∈ {−1, 1} using the bijection y = (−1)x).
Thus, a boolean function is a map f : {−1, 1}n → {−1, 1}. In what follows we will assume
familiarity with the basic concepts of boolean Fourier analysis, as we lack the space for a
thorough review of the subject; a reader seeking such a review is directed to the survey
[O’D08].

We begin with several definitions. Given f : {−1, 1}n → {−1, 1}, define the influence of
xi on f to be the probability over all n-bit strings that f changes value when the ith bit is
flipped:

Infi(f) = Prob
x∈{−1,1}n

[f(x) 6= f(x1, . . . , xi−1,−xi, xi+1, . . . , xn)] .

It is not hard to show that
Infi(f) =

∑

S|i∈S

f̂(S)2 (9.2.1)

1As we will later see, if L is of the form L(V, W, E, [M], {πv,w}) then there will be |W |2M vertices in G.

64

and indeed, equation (9.2.1) can be used to define the influence of a variable on a non-
boolean function f : {−1, 1}n → R.

Given a bit string x and some ρ ∈ (−1, 1), let us define a distribution over y ∈ {−1, 1}n

by setting

yi =

{
xi with probability 1+ρ

2

−xi with probability 1−ρ
2

We write y ∼ρ x to mean a y sampled from such a distribution. Now, given a boolean
function f and ρ ∈ (−1, 1), define the noise sensitivity of f at rate ρ to be

NSρ(f) = Prob
x, y∼ρx

[f(x) 6= f(y)]

where x is sampled uniformly and y ∼ρ x. It can be shown that

NSρ(f) =
1

2
− 1

2

∑

S

f̂(S)2ρ|S|. (9.2.2)

As before, equation (9.2.2) serves as the definition of noise sensitivity for non-boolean
functions.

We observe that if f is a dictator function, i.e. f(x1, . . . , xn) = xi for some i, then
NSρ(f) is exactly (1 − ρ)/2 since f̂(S) = 0 when S 6= {xi} and is 1 otherwise. If f is the
majority function (the boolean function whose value on a bit string is equal to the value of
the majority of the bits), then it can be shown (see [KKMO07] for references) that

NSρ(f) =
1

π
arccos(ρ) + o(1).

Observe that when ρ ∈ [0, 1), the noise sensitivity of a dictator function is lower than that of
the majority function. The MIS theorem (proven in [MOO05]) tells us that if we disqualify
dictators by restricting our attention to functions in which no coordinate has large influence,
then the majority function achieves the smallest possible noise sensitivity.

Theorem 9.2.1 (Majority is Stablest, [MOO05]). For every ρ ∈ [0, 1), ε > 0 there exists δ
such that if f : {−1, 1}n → [−1, 1] with E [f] = 0 and Infi(f) ≤ δ ∀i, then

NSρ(f) ≥ 1

π
arccos ρ − ε.

Note the additional requirement that E [f] = 0; such functions are called balanced. Our

application requires the following corollary from [KKMO07]. It states that if we choose a
negative rather than positive ρ, the majority function becomes the least stable.

Corollary 9.2.2. For every ρ ∈ (−1, 0), ε > 0 there exists δ such that if f : {−1, 1}n →
[−1, 1] with Infi(f) ≤ δ ∀i, then

NSρ(f) ≤ 1

π
arccos ρ + ε.

Observe that f is no longer required to be balanced.
Looking ahead to the proof of Theorem 9.1.2, the test that the verifier will perform on

the PCP in the theorem will be, in a way, a noise-sensitivity test on a boolean function.
Thus, we will be able to bound the soundness of this test by appealing to the MIS theorem.

65

9.3 Proving Theorem 9.1.2

In this section we sketch the construction of the PCP whose existence is claimed in The-
orem 9.1.2. Recall that the PCP is for the problem ULC(δ), so the verifier is given a
unique game L(V,W,E, [M], {πv,w}) and a proof that is accepted with high probability
if opt(L) ≥ 1 − δ and accepted with low probability if opt(L) ≤ δ. The PCP will be
parameterized by ρ ∈ (−1, 0) and ε > 0.

It follows from the results of [KR08] that given L, we may assume with no loss of
generality that all v ∈ V have the same degree. Thus, uniformly sampling v ∈ V and
then uniformly sampling a neighbor w ∈ W of v yields a uniformly random edge (v,w).
Therefore, if we define a proof to be a labeling of L that maximizes the proportion of
satisfied edge constraints, and define the verifier’s test to be uniformly sampling (v,w) and
checking if this labeling satisfies πv,w, then we would have a proof with completeness 1 − δ
and soundness δ. However, such a test involves sampling Ω(log M) bits, and we require a
test that samples only 2.

We therefore look for a way to encode elements of the label set [M] in a way that will
allow such a test. To this end, we will encode labels using the Long Code, which we first
saw in Subhash’s lecture (Lecture 7) on H̊astad’s 3-bit PCP.

9.3.1 Motivation: the Long Code

Recall that in the Long Code, the codeword encoding i ∈ [M] is the truth-table for the
dictator function f(x1, . . . , xn) = xi. In our PCP, the proof will be a labeling of L with
each label encoded using the Long Code. It remains to design a test for the verifier with the
properties specified in Theorem 9.1.2. Before explicitly stating the test in the next section,
we use this section to motivate its construction.

Given a boolean function f , let us say that f is far from a dictator if all coordinates
have negligible influence. It is not hard to design a 2-bit test that, given a truth-table for
a function f , accepts with high probability if f is a dictator and with low probability if f
is far from a dictator. The test required for our PCP must clearly do more than this, but
for the moment let us warm up with this simpler problem.

Consider the following noise-sensitivity test: sample x ∈ {−1, 1}n uniformly, sample
y ∼ρ x as in Section 9.2, and accept iff f(x) 6= f(y). By definition, the probability of
accepting is NSρ(f), the noise sensitivity of f .

The completeness of this test is thus exactly the noise-sensitivity of a dictator function,
which is (1− ρ)/2. On the other hand, we can use Corollary 9.2.2 to bound the soundness:
if f is far from a dictator its noise-sensitivity is at most arccos(ρ)/π + ε.

Returning to our PCP, we require a 2-bit noise-sensitivity test with (almost) exactly
these parameters that instead of testing whether a boolean function is a dictator or far
from it, tests whether an encoded labeling of L (which consists of many boolean functions)
satisfies many edge constraints, or far from it.

9.3.2 The Test

In this section we describe our PCP’s verifier test. First, some notation. For x ∈ {−1, 1}M

and a bijection π : [M] → [M], let x◦π denote the string (xπ(1), . . . , xπ(M)). Given a unique

66

game L(V,W,E, [M], {πv,w}) and the associated PCP proof (which the verifier expects is
the Long Code encoding of a labeling), let fv be the Long Code encoding of the label given
to v ∈ V , and define fw for w ∈ W analogously.

The 2-bit verifier test:

1. Given L(V,W,E, [M], {πv,w}) and a proof, sample v ∈ V uniformly, then

sample two of its neighbors w,w′ ∈ W uniformly and independently.

2. Let π = πv,w and π′ = πv,w′ be the constraints for edges (v,w) and (v,w′).

3. Sample x ∈ {−1, 1}M uniformly and sample y ∼ρ x.

4. Accept if fw(x ◦ π) 6= fw′(y ◦ π′).

Completeness. Assume that opt(L) ≥ 1 − δ and that the proof given to the verifier
encodes all labels correctly (i.e. as dictator functions). Let the labels of v,w,w′ be i, j, j′ ∈
[M], respectively. With probability at least 1 − 2δ, both (v,w) and (v,w′) are satisfied by
the labeling, which implies π(j) = π′(j′) = i. Conditioning on this event, we have

fw(x ◦ π) = xπ(j) = xi and fw′(y ◦ π′) = yπ′(j′) = yi.

Since xi = yi with probability (1 − ρ)/2, the test accepts with the same probability. We
conclude that the completeness is at least (1 − 2δ)(1 − ρ)/2. Tweaking our choice of ρ, we
conclude that completeness is at least (1 − ρ)/2 − ε, as desired.

Figure 9.2: The 2-bit verifier test samples v ∈ V , two neighbors w,w′ ∈ W , then compares
fw and fw′ on certain inputs.

Soundness. As usual, bounding the soundness is the difficult part; we only sketch the
argument. The proof is in the contrapositive direction: assuming that the test accepts with
probability greater than arccos(ρ)/π + ε, we prove the existence of a labeling that satisfies
many edges by exploiting the resulting Fourier-analytic properties of the boolean functions
encoded in the proof (which is where Corollary 9.2.2 comes in).

67

The proof is as follows. Given v ∈ V , let pv be the probability that the test accepts
after choosing v from V . Then

pv = E
w,w′,x,y∼ρx

[
1 − fw(x ◦ π)fw′(y ◦ π′)

2

]

=
1

2
− 1

2
E

w,w′

[
E

x,y∼ρx

[
fw(x ◦ π)fw′(y ◦ π′)

]]
.

Standard Fourier-analytic arguments can be used to show that

E
x,y∼ρx

[
fw(x ◦ π)fw′(y ◦ π′)

]
=

∑

S

f̂w(S)f̂w′(S)ρ|S|

from which it follows that

pv =
1

2
− 1

2
E

w,w′

[
∑

S

f̂w(S)f̂w′(S)ρ|S|
]

=
1

2
− 1

2

∑

S

E
w,w′

[
f̂w(S)f̂w′(S)

]
ρ|S|

=
1

2
− 1

2

∑

S

E
w∼v

[
f̂w(S)

]
E

w′∼v

[
f̂w′(S)

]
ρ|S|

where the last equality follows from the independence of w and w′ (and w ∼ v means that
w is a neighbor of v). If we define a function gv : {−1, 1}n → [−1, 1] by

gv(z) = E
w∼v

[fw(z ◦ πv,w)]

then it is not hard to show that

ĝv(S) = E
w∼v

[
f̂w(S)

]
.

Therefore, returning to pv, we have

pv =
1

2
− 1

2

∑

S

E
w∼v

[
f̂w(S)

]
E

w′∼v

[
f̂w′(S)

]
ρ|S|

=
1

2
− 1

2

∑

S

ĝv(S)2ρ|S|

= NSρ(gv)

where the last equality is by equation (9.2.2).
Recall that we assumed that the test is accepted with probability at least arccos(ρ)/π+ε.

Standard averaging arguments tell us that pv ≥ arccos(ρ)/π+ε/2 for at least an ε/2 fraction
of v ∈ V . By the above, we have

NSρ(gv) ≥ arccos(ρ)/π + ε/2

68

for such v. Now we conclude by Corollary 9.2.2 (having tweaked ε as necessary) that for
such a v, gv has an influential coordinate. This fact can be used to show that for a constant
fraction of neighbors w of v, fw has a small set of influential coordinates. These various
influential coordinates can be used to define a labeling that satisfies a large fraction of
constraints; we direct the reader to [KKMO07] for the gory details.

A final caveat: technically, if we want to prove that fw has a small set of influential
coordinates for a constant fraction of neighbors w of v, it is not enough to assume that gv

has a coordinate with large influence. What is required is for gv to have a coordinate with
large low-degree influence, which is defined, in analogy to equation (9.2.1), as

Infki (f) =
∑

S | i∈S,|S|≤k

f̂(S)2

for some constant k. If we define low-order noise sensitivity in obvious analogy to equation
(9.2.2), it is possible to prove low-order analogues of the Majority is Stablest theorem and
Corollary 9.2.2, which can then be used to formalize the argument that we have sketched.

This completes the description of the PCP test and the proof of Theorem 9.1.2.

9.4 The Big Picture

The past few years have seen a flurry of powerful inapproximability results conditional on the
Unique Games Conjecture. In [Rag08], Raghavendra exhibits a canonical semidefinite pro-
gramming relaxation of an arbitrary CSP whose integrality gap, assuming UGC, is precisely
equal to the best possible approximation ratio for that CSP. In FOCS 2009, Raghavendra
and Steurer presented an efficient rounding scheme for these SDPs that achieves the inte-
grality gap.

UGC has been used to prove that Vertex Cover is conditionally inapproximable to within
2−ε (see [KR08]). This proof utilizes a theorem on the influence of boolean functions due to
Friedgut. In addition, it was independetly shown by Khot and Vishnoi [KV05] and Chawla
et al. [CKK+06] that UGC implies the hardness of approximating Sparsest Cut to within
any constant. These proofs, as expected, use theorems on the influence of boolean functions
due to Kahn-Kalai-Linial and Bourgain.

Underlying these results are surprising and fruitful connections between unique game
reductions, semidefinite programming relaxations of CSPs, extremal problems in Fourier
analysis, and isoperimetric problems in geometry. The reader is directed to Section 5 of
[KKMO07] for an insightful high-level discussion of how these connections are manifested
in the particular case of MAX-CUT.

69

Bibliography

[AA97] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In Proc. 38rd
IEEE Symp. on Foundations of Comp. Science (FOCS), pages 542–547. IEEE, 1997.
doi:10.1109/SFCS.1997.646143.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

[ACG+07] Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal
Talwar, and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion routing
on undirected graphs. Technical Report TR07-113, Electronic Colloquium on Computational
Complexity, 2007. eccc:TR07-113.

[AKK+08] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani,
and Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are easy: extended
abstract. In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages 21–28. ACM, 2008.
doi:10.1145/1374376.1374380.

[AKR95] Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation al-
gorithm for the generalized steiner problem on networks. SIAM J. Computing, 24(3):440–456,
1995. (Preliminary version in 23rd STOC, 1991). doi:10.1137/S0097539792236237.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–555, May
1998. (Preliminary Version in 33rd FOCS, 1992). eccc:TR98-008, doi:10.1145/278298.278306.

[And04] Matthew Andrews. Hardness of buy-at-bulk network design. In Proc. 45th
IEEE Symp. on Foundations of Comp. Science (FOCS), pages 115–124. IEEE, 2004.
doi:10.1109/FOCS.2004.32.

[AR06] Yossi Azar and Oded Regev. Combinatorial algorithms for the unsplittable flow
problem. Algorithmica, 44(1):49–66, 2006. (Preliminary version in IPCO, 2001).
doi:10.1007/s00453-005-1172-z.

[Aro03] Sanjeev Arora. Approximation schemes for NP-hard geometric optimization problems: a
survey. Mathematical Programming, 97(1–2):43–69, 2003. doi:10.1007/s10107-003-0438-y.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization
of NP. J. ACM, 45(1):70–122, January 1998. (Preliminary Version in 33rd FOCS, 1992).
doi:10.1145/273865.273901.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Com-
binatorica, 23(3):365–426, 2003. (Preliminary Version in 29th STOC, 1997). eccc:TR97-003,
doi:10.1007/s00493-003-0025-0.

[AZ06] Matthew Andrews and Lisa Zhang. Logarithmic hardness of the undirected edge-disjoint
paths problem. J. ACM, 53(5):745–761, 2006. (Preliminary version in 37th STOC, 2005).
doi:10.1145/1183907.1183910.

[AZ07] ———. Hardness of the undirected congestion minimization problem. SIAM J. Computing,
37(1):112–131, 2007. (Preliminary version in 37th STOC, 2005). doi:10.1137/050636899.

[AZ08] ———. Almost-tight hardness of directed congestion minimization. J. ACM, 55(6), 2008. (Pre-
liminary version in 38th STOC, 2006). doi:10.1145/1455248.1455251.

70

http://dx.doi.org/10.1109/SFCS.1997.646143
http://eccc.hpi-web.de/report/2007/113
http://dx.doi.org/10.1145/1374376.1374380
http://dx.doi.org/10.1137/S0097539792236237
http://eccc.hpi-web.de/report/1998/008
http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.1109/FOCS.2004.32
http://dx.doi.org/10.1007/s00453-005-1172-z
http://dx.doi.org/10.1007/s10107-003-0438-y
http://dx.doi.org/10.1145/273865.273901
http://eccc.hpi-web.de/report/1997/003
http://dx.doi.org/10.1007/s00493-003-0025-0
http://dx.doi.org/10.1145/1183907.1183910
http://dx.doi.org/10.1137/050636899
http://dx.doi.org/10.1145/1455248.1455251

[AZ09] ———. Complexity of wavelength assignment in optical network optimization. IEEE/ACM
Trans. Netw., 17(2):646–657, 2009. (Preliminary version in 25th INFOCOM, 2006).
doi:10.1145/1552193.1552215.

[Bar98] Yair Bartal. On approximating arbitrary metrices by tree metrics. In Proc. 30th ACM Symp.
on Theory of Computing (STOC), pages 161–168. ACM, 1998. doi:10.1145/276698.276725.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. Robust PCPs of proximity, shorter PCPs and applications to coding. SIAM J. Com-
puting, 36(4):889–974, 2006. (Preliminary Version in 36th STOC, 2004). eccc:TR04-021,
doi:10.1137/S0097539705446810.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and
nonapproximability—towards tight results. SIAM J. Computing, 27(3):804–915, June 1998. (Pre-
liminary Version in 36th FOCS, 1995). eccc:TR95-024, doi:10.1137/S0097539796302531.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applica-
tions to numerical problems. J. Computer and System Sciences, 47(3):549–595, December 1993.
(Preliminary Version in 22nd STOC, 1990). doi:10.1016/0022-0000(93)90044-W.

[BS00] Alok Baveja and Aravind Srinivasan. Approximation algorithms for disjoint paths
and related routing and packing problems. Math. Oper. Res., 25(2):255–280, 2000.
doi:10.1287/moor.25.2.255.12228.

[CGKT07] Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, and Kunal Talwar. Hardness
of routing with congestion in directed graphs. In Proc. 39th ACM Symp. on Theory of Computing
(STOC), pages 165–178. ACM, 2007. doi:10.1145/1250790.1250816.

[CHKS06] Chandra Chekuri, Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R.
Salavatipour. Approximation algorithms for non-uniform buy-at-bulk network design. In
Proc. 47th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 677–686. IEEE, 2006.
doi:10.1109/FOCS.2006.15.

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon
University, 1976.

[CK06] Julia Chuzhoy and Sanjeev Khanna. Hardness of directed routing with congestion. Technical
Report TR06-109, Electronic Colloquium on Computational Complexity, 2006. eccc:TR06-109.

[CKK+06] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivaku-
mar. On the hardness of approximating multicut and sparsest-cut. Computational Complexity,
15(2):94–114, 2006. (Preliminary version in 20th IEEE Conference on Computational Complex-
ity, 2005). doi:10.1007/s00037-006-0210-9.

[CKS06] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An o(sqrt(n)) approx-
imation and integrality gap for disjoint paths and unsplittable flow. Theory of Computing,
2(1):137–146, 2006. doi:10.4086/toc.2006.v002a007.

[CMM06] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algo-
rithms for unique games. In Proc. 38th ACM Symp. on Theory of Computing (STOC), pages
205–214. ACM, 2006. doi:10.1145/1132516.1132547.

[DH09] Irit Dinur and Prahladh Harsha. Composition of low-error 2-query PCPs using decodable
PCPs. In Proc. 50th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 472–481.
IEEE, 2009. eccc:TR09-042, doi:10.1109/FOCS.2009.8.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. (Preliminary
Version in 38th STOC, 2006). eccc:TR05-046, doi:10.1145/1236457.1236459.

[EH03] Lars Engebretsen and Jonas Holmerin. Towards optimal lower bounds for
clique and chromatic number. Theoretical Comp. Science, 299(1–3):537–584, 2003.
doi:10.1016/S0304-3975(02)00535-2.

[Erl06] Thomas Erlebach. Approximation algorithms for edge-disjoint paths and unsplittable flow.
In Efficient Approximation and Online Algorithms, LNCS, chapter 4, pages 97–134. Springer,
2006. doi:10.1007/11671541_4.

71

http://dx.doi.org/10.1145/1552193.1552215
http://dx.doi.org/10.1145/276698.276725
http://eccc.hpi-web.de/report/2004/021
http://dx.doi.org/10.1137/S0097539705446810
http://eccc.hpi-web.de/report/1995/024
http://dx.doi.org/10.1137/S0097539796302531
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1287/moor.25.2.255.12228
http://dx.doi.org/10.1145/1250790.1250816
http://dx.doi.org/10.1109/FOCS.2006.15
http://eccc.hpi-web.de/report/2006/109
http://dx.doi.org/10.1007/s00037-006-0210-9
http://dx.doi.org/10.4086/toc.2006.v002a007
http://dx.doi.org/10.1145/1132516.1132547
http://eccc.hpi-web.de/report/2009/042
http://dx.doi.org/10.1109/FOCS.2009.8
http://eccc.hpi-web.de/report/2005/046/
http://dx.doi.org/10.1145/1236457.1236459
http://dx.doi.org/10.1016/S0304-3975(02)00535-2
http://dx.doi.org/10.1007/11671541_4

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, March
1996. (Preliminary version in 32nd FOCS, 1991). doi:10.1145/226643.226652.

[FHW80] Steven Fortune, John E. Hopcroft, and James Wyllie. The directed sub-
graph homeomorphism problem. Theoretical Comp. Science, 10(2):111–121, 1980.
doi:10.1016/0304-3975(80)90009-2.

[FL92] Uriel Feige and László Lovász. Two-prover one-round proof systems: Their power and their
problems (extended abstract). In Proc. 24th ACM Symp. on Theory of Computing (STOC),
pages 733–744. ACM, 1992. doi:10.1145/129712.129783.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximat-
ing arbitrary metrics by tree metrics. J. Computer and System Sciences, 69(3):485–497, 2004.
(Preliminary version in 35th STOC, 2003). doi:10.1016/j.jcss.2004.04.011.

[GKR+03] Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, F. Bruce Shepherd,
and Mihalis Yannakakis. Near-optimal hardness results and approximation algorithms for
edge-disjoint paths and related problems. J. Computer and System Sciences, 67(3):473–496,
2003. (Preliminary version in 31st STOC, 1999). doi:10.1016/S0022-0000(03)00066-7.

[GMR08] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beat-
ing the random ordering is hard: Inapproximability of maximum acyclic subgraph. In Proc.
49th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 573–582. IEEE, 2008.
doi:10.1109/FOCS.2008.51.

[GT06a] Anupam Gupta and Kunal Talwar. Approximating unique games. In Proc. 17th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 99–106. SIAM, 2006.
doi:10.1145/1109557.1109569.

[GT06b] Venkatesan Guruswami and Kunal Talwar. Hardness of low congestion routing in directed
graphs. Technical Report TR06-141, Electronic Colloquium on Computational Complexity, 2006.
eccc:TR06-141.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995. (Preliminary version in 26th STOC, 1994). doi:10.1145/227683.227684.

[Har04] Prahladh Harsha. Robust PCPs of Proximity and Shorter PCPs. Ph.D. thesis, Massachusetts
Institute of Technology, September 2004.

[H̊as01] Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.
(Preliminary Version in 29th STOC, 1997). doi:10.1145/502090.502098.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 34th ACM Symp.
on Theory of Computing (STOC), pages 767–775. ACM, 2002. doi:10.1145/509907.510017.

[Kho05] ———. Guest column: inapproximability results via long code based PCPs. SIGACT News,
36(2):25–42, 2005. doi:10.1145/1067309.1067318.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal in-
approximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput-
ing, 37(1):319–357, 2007. (Preliminary version in 45th FOCS, 2004). eccc:TR05-101,
doi:10.1137/S0097539705447372.

[Kle96] Jon M Kleinberg. Approximation algorithms for disjoint paths problems. Ph.D. thesis, Mas-
sachusetts Institute of Technology, May 1996.

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-ε.
J. Computer and System Sciences, 74(3):335–349, 2008. (Preliminary Version in 18th IEEE
Conference on Computational Complexity, 2003). doi:10.1016/j.jcss.2007.06.019.

[KS01] Stavros G. Kolliopoulos and Clifford Stein. Approximation algorithms for single-source
unsplittable flow. SIAM J. Computing, 31(3):919–946, 2001. (Preliminary version in 38th FOCS,
1997). doi:10.1137/S0097539799355314.

72

http://dx.doi.org/10.1145/226643.226652
http://dx.doi.org/10.1016/0304-3975(80)90009-2
http://dx.doi.org/10.1145/129712.129783
http://dx.doi.org/10.1016/j.jcss.2004.04.011
http://dx.doi.org/10.1016/S0022-0000(03)00066-7
http://dx.doi.org/10.1109/FOCS.2008.51
http://dx.doi.org/10.1145/1109557.1109569
http://eccc.hpi-web.de/report/2006/141
http://dx.doi.org/10.1145/227683.227684
http://hdl.handle.net/1721.1/26720
http://dx.doi.org/10.1145/502090.502098
http://dx.doi.org/10.1145/509907.510017
http://dx.doi.org/10.1145/1067309.1067318
http://eccc.hpi-web.de/report/2005/101
http://dx.doi.org/10.1137/S0097539705447372
http://hdl.handle.net/1721.1/11013
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1137/S0097539799355314

[KV05] Subhash Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality gap for
cut problems and embeddability of negative type metrics into l1. In Proc. 46th IEEE Symp. on
Foundations of Comp. Science (FOCS), pages 53–62. IEEE, 2005. doi:10.1109/SFCS.2005.74.

[LR99] Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theo-
rems and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.
doi:10.1145/331524.331526.

[MH99] Sanjeev Mahajan and Ramesh Hariharan. Derandomizing approximation algorithms based
on semidefinite programming. SIAM J. Computing, 28(5):1641–1663, 1999. (Preliminary version
in 36th FOCS, 1995). doi:10.1137/S0097539796309326.

[MM09] Konstantin Makarychev and Yury Makarychev. How to play unique games on expanders,
2009. arXiv:0903.0367.

[MOO05] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability
of functions with low in.uences invariance and optimality. In Proc. 46th IEEE Symp. on
Foundations of Comp. Science (FOCS), pages 21–30. IEEE, 2005. arXiv:math/0503503,
doi:10.1109/SFCS.2005.53.

[MR08] Dana Moshkovitz and Ran Raz. Two query PCP with sub-constant error. In Proc. 49th IEEE
Symp. on Foundations of Comp. Science (FOCS), pages 314–323. IEEE, 2008. eccc:TR08-071,
doi:10.1109/FOCS.2008.60.

[O’D08] Ryan O’Donnell. Some topics in analysis of Boolean functions. In Proc. 40th ACM
Symp. on Theory of Computing (STOC), pages 569–578. ACM, 2008. eccc:TR08-055,
doi:10.1145/1374376.1374458.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages 245–254. ACM, 2008.
doi:10.1145/1374376.1374414.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Computing, 27(3):763–803, June 1998.
(Preliminary Version in 27th STOC, 1995). doi:10.1137/S0097539795280895.

[RS95] Neal Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. Computing, 25(2):252–271, April 1996. (Preliminary Version
in 23rd STOC, 1991 and 3rd SODA, 1992). doi:10.1137/S0097539793255151.

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of
Computing (STOC), pages 475–484. ACM, 1997. doi:10.1145/258533.258641.

[RT87] Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.
doi:10.1007/BF02579324.

[RZ] Satish Rao and Shuheng Zhou. (unpublished).

[ST00] Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In Proc. 32nd ACM Symp. on Theory of Computing (STOC),
pages 191–199. ACM, 2000. doi:10.1145/335305.335329.

[Tre01] Luca Trevisan. Non-approximability results for optimization problems on bounded degree in-
stances. In Proc. 33rd ACM Symp. on Theory of Computing (STOC), pages 453–461. ACM,
2001. doi:10.1145/380752.380839.

[Tre08] ———. Approximation algorithms for unique games. Theory of Computing, 4(1):111–128, 2008.
(Preliminary version in 46th FOCS, 2005). eccc:TR05-034, doi:10.4086/toc.2008.v004a005.

[VV04] Kasturi R. Varadarajan and Ganesh Venkataraman. Graph decomposition and a greedy
algorithm for edge-disjoint paths. In Proc. 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 379–380. SIAM, 2004. doi:10.1145/982792.982846.

73

http://dx.doi.org/10.1109/SFCS.2005.74
http://dx.doi.org/10.1145/331524.331526
http://dx.doi.org/10.1137/S0097539796309326
http://arxiv.org/abs/0903.0367
http://arxiv.org/abs/math/0503503
http://dx.doi.org/10.1109/SFCS.2005.53
http://eccc.hpi-web.de/report/2008/071
http://dx.doi.org/10.1109/FOCS.2008.60
http://eccc.hpi-web.de/report/2008/055
http://dx.doi.org/10.1145/1374376.1374458
http://dx.doi.org/10.1145/1374376.1374414
http://dx.doi.org/10.1137/S0097539795280895
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1137/S0097539793255151
http://dx.doi.org/10.1145/258533.258641
http://dx.doi.org/10.1007/BF02579324
http://dx.doi.org/10.1145/335305.335329
http://dx.doi.org/10.1145/380752.380839
http://eccc.hpi-web.de/report/2005/034
http://dx.doi.org/10.4086/toc.2008.v004a005
http://dx.doi.org/10.1145/982792.982846

	Preface
	Tutorial Announcement
	An Introduction to Approximation Algorithms (Lecturer: Sanjeev Arora, Scribe: Darakhshan J. Mir)
	Introduction
	Examples

	Polynomial-time Approximation Scheme (PTAS)
	Type-1 PTAS
	Type-2 PTAS

	Approximation Algorithms for MAXCUT
	Integer Program Version
	Linear Program Relaxation and Randomized Rounding
	Semi Definite Programming (SDP) Based Method

	The PCP Theorem: An Introduction (Lecturer: Dana Moshkovitz, Scribe: Alexander S. Kulikov)
	Optimization Problems and Gap Problems
	Probabilistic Checking of Proofs
	Checking of Proofs
	Local Checking of Proofs
	The Connection to The Hardness of Gap Problems
	The PCP Theorem

	Projection Games

	Approximation Algorithms for Network Problems (Lecturer: Matthew Andrews, Scribe: Gwen Spencer)
	Network Flow Problems
	Minimum Cost Steiner Forest
	Congestion Minimization (Fractional)
	Congestion Minimization (Integral)
	Edge Disjoint Paths
	Minimum Cost Network Design

	Hardness of the Edge-Disjoint Paths Problem (Lecturer: Lisa Zhang, Scribe: David Pritchard)
	Overview
	Literature
	Hardness of Directed EDP
	Hardness of Undirected EDP
	Hardness of Bounded-Degree Independent Set
	The Graphs G and H
	Small Cycles
	Analysis Sketch

	Proof of the PCP Theorem (Part I) (Lecturer: Prahladh Harsha, Scribe: Ashkan Aazami)
	Probabilistically Checkable Proofs (PCPs)
	Strong Form of the PCP Theorem and Robust PCPs
	Equivalence of Robust PCPs and 2-Provers Projection PCPs

	Locally Checkable Codes
	Reed-Muller Code
	Low Degree Test (Line-Point Test)
	Zero Sub-Cube Test

	Proof of the PCP Theorem (Part II) (Lecturer: Prahladh Harsha, Scribe: Geetha Jagannathan & Aleksandar Nikolov)
	Recap from Part 1
	Robust PCP for CIRCUIT-SAT
	Problem Definition
	Arithmetization of the Assignment
	Arithmetization of the Circuit
	The PCP Verifier
	PCP Composition

	Håstad's 3-Bit PCP (Lecturer: Subhash Khot, Scribe: Dev Desai)
	Introduction
	Proof Composition
	The Long Code and its Test
	Incorporating Consistency
	Concluding Remarks

	Semidefinite Programming and Unique Games (Lecturer: Moses Charikar, Scribe: Alantha Newman)
	Unique Games
	Examples
	Linear Equations Mod p
	MAXCUT

	Satisfiable vs Almost Satisfiable Instances
	Almost Satisfiable Instances of MAXCUT

	General Unique Games
	Integer Program for Unique Games
	Trevisan's Algorithm

	Improving the Approximation Ratio
	Consequences

	Unique Games Hardness for MAXCUT (Lecturer: Subhash Khot, Scribe: Igor Gorodezky)
	Introduction: MAXCUT and Unique Games
	The Goemans-Williamson algorithm
	Label Cover and Unique Games
	The Main Result

	Majority is Stablest
	Proving [Theorem]thmmain
	Motivation: the Long Code
	The Test

	 The Big Picture

	Bibliography

