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Lec. 1: Approximation Algorithms for NP-hard problems

Lecturer: Prahladh Harsha Scribe: Srikanth Srinivasan

In this course, we will be studying, as the title suggests, the approximability and inapprox-
imability (limits of approximability) of different combinatorial optimization problems. All
the problems we will be looking at will be ones that lack efficient algorithms and in partic-
ular will be NP-hard problems. The last two-three decades has seen remarkable progress
in approximation algorithms for several of these NP-hard problems. The theory of NP-
completeness provides a satisfactory theory of algorithmic hardness in many ways, however
it is unable to explain the vastly different approximabilities of different NP-hard problems.
Since the early 90’s, work on probabilistic proof systems have shed light on the limitations
to approximation algorithms. We will study in detail this connection between proof systems
and (in)approximability and spend considerable time on the construction of such proof sys-
tems. In the first few lectures, we will discuss several approximation algorithms before we
proceed to the topic of the course, “limits of approximation algorithm”. This course will
be a fleshed out version of a recent DIMACS tutorial by the same name [HC09].

The agenda for this first lecture is as follows.

• A brief history of Combinatorial Optimization.

• A brief survey of the area of Approximation Algorithms, with some examples.

The references for this lecture include Lecture 1 of the DIMACS tutorial [HC09], Lectures
1 and 2 of Sudan’s course on inapproximability at MIT [Sud99], and Sections 1.1 and 3.2
from Vazirani’s book on Approximation Algorithms [Vaz04].

1.1 Combinatorial Optimization

The area of Combinatorial Optimization deals with algorithmic problems of the following
flavour: Find a “best” object in a possibly large, but finite, space. As a subfield of mathe-
matics, this area is relatively new, having been studied only in the last 100 years or so. One
of the early references is the book of Lawler (1976) titled “Combinatorial Optimization:
Matroids and Networks”.

We begin with possibly two of the most prominent examples of Combinatorial Optimization
problems: Network Flows, and Linear Programming.
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1.1.1 Network Flows

The input in this problem consists of the following: a directed graph G = (V,E), a desig-
nated source s and sink t of G, and a capacity function c : E → Z+ defined on the edges of
G.
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In the Flow Problem, we are asked to compute the maximum amount of flow one can route
from the source s to sink t. More formally, we need to find a flow f : E → R+ such that:

• ∀e ∈ E, f(e) ≤ c(e),

• ∀v 6∈ {s, t},
∑

e into v f(e) =
∑

e leaving v f(e), and

• The quantity
(∑

e leaving s f(e)−
∑

e into s f(e)
)

is maximized, among all flows satis-

fying the above two conditions.

In the form stated stated above, it is not clear that the flow problem is a combinatorial
optimization problem, since it involves searching for solutions in an infinite space (the space
of all possible flows). However, by the Max-flow Min-cut theorem of Ford and Fulkerson, it
is known that there is an optimum integer-valued flow in the network and thus the problem
is really only a search problem over a finite space – a combinatorial optimization problem!.
In fact, Ford and Fulkerson designed a combinatorial algorithm for this problem based on
the Max-Flow Min-Cut theorem.

1.1.2 Linear Programming (LP)

In this case, we want to solve optimization problems of the following form:

max cTx

subject to Ax ≤ b
where A ∈ Rm×n, b ∈ Rm, c ∈ Rn

Again, the above problem does not really look like a Combinatorial Optimization problem,
given that our search space (a priori) is the Euclidean space Rn. However, it is known (by
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Dantzing and von Neumann) that if the above optimization problem has an optimum at all,
there is a vertex of the polyhedron described by the system of inequalities that achieves this
optimum. Hence, the problem boils down to searching for the optimum among the vertices
of the polyhedron, of which there are only finitely many. Based on this idea, Dantzig
designed the Simplex algorithm for Linear Programming.

1.1.3 A more formal view of Combinatorial Optimization problems

We will formally define a combinatorial optimization problem Π to be a 4-tuple (X ,Y,Feas,Objective)
where X refers to an input space, Y a solution space Y, Feas : X ×Y → {0, 1} a feasibility
function and Objective : X × Y → R the objective function.

Given an input instance x ∈ X , we say that a solution y ∈ Y is feasible if Feas(x, y) = 1.
The focus of the problem is related to finding those y∗ ∈ Y that are feasible and maximize
(or minimize) the Objective function Objective(x, y) among all feasible y: such a y∗ is called
optimum; we denote by OPT(x) the value Objective(x, y∗).

Fix X ,Y,Feas, and Objective as above. Associated with them are three related algorithmic
problems:

1. The Search Problem: Given as input x ∈ X , find an optimum y∗. This is the kind of
problem described in the examples above.

2. The Computational Problem: Given x ∈ X , find OPT(x).

3. The Decision Problem: Given x ∈ X and k ∈ R, is OPT(x) ≥ k?

It is easily seen that the above problems are listed in nonincreasing order of hardness. That
is, if the search problem is solvable efficiently, then so is the computational problem, and if
the computational problem is efficiently solvable, then so is the decision problem.

1.2 Efficiency and the theory of NP-completeness

The two algorithms that we mentioned above – the original algorithm of Ford and Fulkerson,
and Dantzig’s Simplex algorithm – solve the problems that they are supposed to, but aren’t
efficient in today’s sense of the word. In an important paper in 1965, Edmonds introduced
the notion of P – the class of decision problems that can be solved in polynomial time – and
argued that this was an interesting notion of “efficient” algorithm. Throughout this course,
by an efficient algorithm, we will mean an algorithm (sometimes randomized) that runs in
time polynomial in the size of its input. Neither Simplex nor the orignal Ford-Fulkerson
algorithm are polynomial time, though the problems that they solve were proved to be in
P via other algorithms.
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However, there were many interesting algorithmic problems for which such efficient solu-
tions remained elusive. To explain coherently why many natural problems did not seem
to have a polynomial-time solution, Cook, Levin, and Karp introduced the theory of NP-
completeness. The class NP is another class of decision problems and is defined as follows.

Definition 1.2.1. A language L ⊆ {0, 1}∗ is in NP iff there is a polynomial-time algorithm
M and a polynomial p(·) such that for every x ∈ {0, 1}∗, x ∈ L iff there is a y ∈ {0, 1}p(|x|)
such that M(x, y) = 1.

Cook defined the class NP in 1971 and showed that the decision problem of checking satis-
fiability of a given boolean formula is “as hard as” any other problem in this class. To state
this formally, we need a couple of definitions.

Definition 1.2.2. Fix languages L1, L2 ⊆ {0, 1}∗. We say that L1 polynomial-time reduces
to L2 (written L1 ≤p L2) if there is a polynomial-time computable function f : {0, 1}∗ →
{0, 1}∗ such that for any x ∈ {0, 1}∗, x ∈ L1 iff f(x) ∈ L2.

The above definition captures our notion of L2 being at least as hard to solve as L1. In
particular, note that if L2 has a polynomial-time algorithm, so does L1. Now, armed with
this definition, we can state what we mean when we say that a problem is as hard as any
other problem in NP.

Definition 1.2.3. A language L is NP-hard iff each L′ ∈ NP polynomial-time reduces to
L. If L is NP-hard and also happens to belong to NP, then we say that L is NP-complete.

We can now state Cook’s theorem.

Theorem 1.2.4 (Cook’s Theorem). Satisfiability is NP-complete.

Building on Cook’s work, Karp, in 1972, showed that a whole range of interesting combina-
torial algorithms were all NP-complete also, showing that NP-completeness was a natural
phenomenon worthy of further study. These problems included Vertex Cover (the problem
of checking if, in a given input graph, there is a small set of vertices that cover all the
edges), the Travelling Salesperson problem (checking if there is a small tour of a collection
of cities that visits each city exactly once), and Max-Cut (the problem of checking if there is
a partition of the vertices of a given graph into two pieces such that many edges go between
the pieces).

Theorem 1.2.5 (Karp’s Theorem). Vertex Cover, Travelling Salesperson Problem, and
Max-Cut are all NP-complete.

The framework of NP-completeness can be used to show that many interesting Combinato-
rial Optimization problems are NP-hard: by this, we mean that the corresponding decision
problems are NP-hard.
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1.3 Coping with NP-hardness

When an interesting Combinatorial Optimization problem has been proved to be NP-hard,
what should one do next? Assuming P 6= NP, there is unlikely to be an efficient algorithm
that solves it completely. How does one then cope with such NP-hardness? Here are two
popular approaches:

• Heuristics: One could try to come up with an algorithm that worked on “typical”
instances of the problem. The problem with this approach is that it is hard to define
“typical”: there may be algorithms that work on “most” instances, but yet real-life
instances may come from a distribution that is mostly supported on the bad instances
for this algorithm. Nevertheless, this approach is used commonly and in certain cases,
one can demonstrate certain theoretical guarantees. This will however, be beyond the
scope of this course.

• Approximation algorithms: Here, one scales down one’s hopes of finding the op-
timum solution to the problem, and tries to look for provably “close to optimum”
solutions.

To phrase this more formally, say we are dealing with a Combinatorial Optimization
problem associated with the tuple (X ,Y,Feas,Objective) where the aim is to maximize
the Objective function. Given an x ∈ X , a y ∈ Y is said to be an α-approximate
solution (for α ≥ 1) if y is feasible and

OPT(x)

α
≤ Objective(x, y) ≤ OPT(x)

(For minimization problems, a feasible y is α-approximate if OPT(x) ≤ Objective(x, y) ≤
αOPT(x).)

An algorithm A is said to be an α-approximation algorithm if for each x ∈ X , the
element A(x) ∈ Y is an α-approximate solution. The Combinatorial Optimization
problem is said to be α-approximable if it has a polynomial-time α-approximation
algorithm.

Approximation algorithms will be the focus of this course. We give a few examples of
approximation algorithms for NP-hard Combinatorial Optimization problems below.

1.3.1 A 2-approximation for Vertex Cover

The Vertex Cover problem is defined as follows:

• INPUT: An undirected graph G = (V,E).

• OUTPUT: Find a cover C ⊆ V such that ∀(u, v) ∈ E, either u ∈ C or v ∈ C.
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• OBJECTIVE: Minimize |C|.

We want an efficient algorithm A such that for any graph G, we have

OPT(G) ≤ |A(G)| ≤ 2OPT(G)

Note the dilemma here: we want to prove that the algorithm outputs a solution that is at
most twice as bad as the optimal solution, but we have no handle on the optimal solution
itself (at least, we have no algorithm to compute it). This is a hurdle we will need to
overcome in each of the problems we consider. The way we will overcome it here is to upper
bound |A(G)| by 2 times a quantity that is an efficiently computable lower bound on the
size of the minimum vertex cover of G.

The lower bound we use is the size of any maximal matching in the graph G. Clearly, the
size of any matching in G – and hence, in particular, a maximal matching – is a lower bound
on the size of any vertex cover of G. More interestingly, however, the following is true (the
simple proof is left to the reader):

Claim 1.3.1. If M is a maximal matching in G, then the set of endpoints of the edges in
M form a vertex cover of G.

Given the above claim, there is an easy way to get a 2-approximation to Vertex Cover: Find
any maximal matching M in G and output all the endpoints of edges that occur in M . The
output set is of cardinality at most twice the cardinality of M , which is at most twice the
size of the minimum vertex cover.

Is the analysis of the above algorithm optimal in terms of approximation ratios? The answer
is easily seen to be yes, since on an input graph that is simply a collection of disjoint edges,
the algorithm outputs a set that is twice the size of the minimum vertex cover.

Moreover, one can also see that the lower bound we are using – the size of a maximal
matching – can be a factor of 2 less than the size of the minimum vertex cover: an example
of a graph where this happens is a clique with an odd number of vertices. This tells us that
any analysis that uses the size of a maximal matching as a lower bound on the vertex cover
cannot be used to prove that an algorithm is an α-approximation, for any constant α < 2.

These explain why the above algorithm can perform no better. We will later see in this
course that in fact no other algorithm can perform better assuming some complexity as-
sumptions.

1.3.2 The Travelling Salesperson Problem

The Travelling Salesperson Problem (TSP) is defined as follows:

• INPUT: A distance function d : [n] × [n] → R≥0 between n vertices of a complete
graph.
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• OUTPUT: Find a tour v0, v1, . . . , vn of the vertices s.t. v0 = vn and each vertex
appears exactly once in the list {v0, v1, . . . , vn−1}.

• OBJECTIVE: Minimize the total length
∑n−1

i=0 d(vi, vi+1) of the tour.

The Metric-TSP problem is the special case of this problem where the input distance func-
tion is a metric: i.e it is a symmetric function satisfying the triangle inequality:

∀x, y, z ∈ [n] d(x, z) ≤ d(x, y) + d(y, z)

It turns out that the general TSP (without assuming the metric property) cannot have an
efficient α-approximation algorithm for any α that is polynomial-time computable unless
P = NP. This follows from a simple reduction from the well-known NP-complete problem
called the Hamiltonian Cycle problem: the input here is a directed graph and we need to
check if the graph contains a Hamiltonian cycle, a cycle in which each vertex of the graph
appears exactly once.

Claim 1.3.2. For any α(n) that can be computed in time poly(n), the TSP is not α(n)-
approximable unless P = NP.

Proof. We prove the claim by showing that if the TSP does have an efficient α(n)-approximation
algorithm, then we can use such an algorithm to design an algorithm that solves the Hamil-
tonian cycle problem. Given an input graph G = ([n], E) to the Hamiltonian cycle problem,
we construct an instance of the TSP as follows: a distance function is defined on [n] with

d(i, j) =

{
1, if (i, j) ∈ E,
α(n) · n+ 1 otherwise.

If G has a Hamiltonian cycle, then the optimum of the instance of the TSP problem is at
most n; otherwise, the optimum is at least α(n) ·n+1. If the TSP were α(n)-approximable,
we would be able to efficiently distinguish between these two cases and hence, we would
have a polynomial-time algorithm for the Hamiltonian cycle problem which would imply
that P = NP.

Note that the instance of TSP constructed in the above reduction is not an instance of
Metric-TSP. Hence, we can still hope for an efficient algorithm to approximate the optimum
to this problem. Indeed, we now show that this problem has a 3/2-approximation algorithm.

We start by describing a simpler 2-approximation algorithm for the problem. Let G be the
weighted graph corresponding to a given instance of the TSP (the weight of the edge (i, j)
is d(i, j)). As in the case of vertex cover, we would first like an efficiently computable lower
bound to the optimum. This lower bound, in the case of the Metric TSP, is the weight of
the Minimum Spanning Tree (MST) of G. To see that this is indeed a lower bound, note
that removing any edge from any TSP tour of the vertices gives us a spanning tree of G,
the weight of which is of course at least the weight of the MST of G.

Now, we use the MST of G to compute a short tour of all the vertices of G as follows:
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• Find an MST T of G.

• Consider the subgraph H of G obtained by adding to T edges (i, j) for each i, j such
that (j, i) ∈ T .

• Since the above graph is Eulerian, we can efficiently find an Eulerian tour of H.
Output this tour.

The MST

Eulerian

Tour

Figure 1: Finding an Eulerian Tour from the MST

Note that the weight of the tour output by the above algorithm is twice the weight of T
and hence at most twice the weight of the optimum TSP tour. To obtain a TSP tour of at
most the same weight, we use the following useful fact about instances of Metric TSP.

Lemma 1.3.3. Let (G, d) be an instance of Metric TSP. Given any tour v0, v1, . . . , vm of
all the vertices of G, one can find efficiently a TSP tour u0, u1, . . . , un of at most the same
weight as the given tour.

Proof. The proof is simple. We define the TSP tour u0, u1, . . . , un to be a subsequence of
v0, v1, . . . , vm as follows. Let u0 = v0. Say ui has been defined and is equal to vj . Then,
we define ui+1 to be vk for the least k such that k > j and vj has not yet been visited in
the path u0, u1, . . . , ui; if no such k exists, then we set un = vm. It is easy to prove, by the
triangle inequality, that each such “short-cut” we take can only be of shorter length than
the walk along the vi’s. Hence, the length of the TSP tour obtained is at most the length
of the input tour.

The description of the approximation algorithm A is now complete: we construct the Eule-
rian tour as above and then obtain a TSP tour from it as described in Lemma 1.3.3. Clearly,
we have

OPT(G, d) ≤ A(G, d) ≤ 2OPT(G, d)
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Thus, A is a 2-approximation algorithm for Metric TSP. To obtain a 3/2-approximation
algorithm, we notice that we do not need to double the edges of T above to get an Eulerian
graph and hence an Eulerian tour: any method of obtaining an Eulerian graph from T by
adding only a small-weight set of edges to T will do.

Note that since we can reorient the edges of G as we please (since the metric is symmetric),
we would be done if the degrees of each vertex in T were even. (Of course, this cannot
happen since T is a tree and must have degree-1 vertices.) So the “bad” vertices are the
odd-degree vertices. We would like to add a small-weight set of edges to T so that the degree
of every vertex is even. Let B be the set of bad vertices. Surely, |B| is even. Hence, a
simple way of getting a graph where every vertex has even degree is to add to T a matching
that saturates exactly the vertices in B. We add a minimum weight such matching M to
T .

We claim that the weight of such a matching is small: it is at most half the weight of the
optimum TSP tour.

Claim 1.3.4. Let M be defined as above. Then,∑
e∈M

d(e) ≤ OPT(G, d)

2

Note that, assuming the above claim, we can obtain an Eulerian tour, and hence a TSP
tour, of weight at most 3/2OPT(G,d). Thus, we have a 3/2-approximation algorithm.
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Tour of G Tour of B

Figure 2: Finding a tour of B from a tour of G

Proof of Claim. Consider any optimal TSP tour v0, v1, . . . , vn of G. Note that, by removing
any vertex vi from this tour, by the triangle inequality, one can only shorten its length. Thus,
by removing vertices not in B one after another, we end up with a TSP tour of B of at
most the same weight.
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This TSP tour of B is a disjoint union of two matchings M1 and M2 saturating B. Hence,
at least one of them is at most half the weight of the TSP tour. Since M is a minimum
weight matching on the vertices in B, the claim follows.

This improvement from 2 to 3/2 is due to Christofides [Chr76]. In fact, the recent result on
approximation algorithms for asymmetric metric TSP due to Asadpour, Goemans, Mdry,
Oveis-Gharan, and Saberi [AGM+10] (which won the best paper award in SODA 2010) uses
a similar idea to improve the approximation factor from O(log n) (due to Frieze, Galbiati
and Maffioli [FGM82]) to O(log n/ log logn). However, the above algorithm for symmetric
metric-TSP due to Christofides [Chr76] remains unimproved since 1976.
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