
Limits of Approximation Algorithms 12 Mar, 2010 (IMSc)

Lec. 6: Linearity Testing over GF(2) via Fourier Analysis

Lecturer: Prahladh Harsha Scribe: Yadu Vasudev

The agenda for today’s lecture is

• Analysis of Linearity testing using Fourier technique.

• Introduction to Coding theory and polynomial codes.

• Proof of CIRCUIT-SAT ∈ PCP1,1−ε(O(n2), O(1))

The references for this lecture include Lectures 10 and 13 from Sudan’s course on inap-
proximability at MIT [Sud99] and Lectures 3 and 4 from a course on PCPs at Univ of
Chicago [Har07]. Parts of the these notes have been adapted from the notes scribed by
Joshua A.Grochow (Lecture 3) and Andrew Cotter (Lecture 4) for the Univ. of Chicago
course by the same instructor.

6.1 Linearity Testing and Fourier Analysis

Recall the BLR test for linearity from last lecture:

BLR-Test(f) : 1. Choose x, y ∈R G
2. Accept if f(x) + f(y) = f(x+ y).

Randomness of BLR-Test: In this test, the number of random bits used is 2 log |G|.
Since there are |G| elements to be considered, atleast log |G| number of random bits seem
necessary. Do we really require an additional log |G| random coins. We could ask if the
BLR-test can be done using just log |G|+ o(log |G|) random bits and O(1) queries. Shpilka
and Wigderson [SW06] show that this is in fact possible, if one chooses the two points x and
y as vertices of a random edge in a Cayley graph on G instead of independently. The error
probability of the test in this case depends on the second eigenvalue of the Cayley graph.
For a group G and a set of generators S = {s1, . . . , sk} for G closed under negation (i.e.,
s ∈ S implies −s ∈ S) the corresponding Cayley graph C(G,S) = (V,E) is constructed as
follows. V = G and E = {(x, x+ s)|x ∈ V, s ∈ S}.

6.1.1 Fourier Analysis

In this section, we give better bounds for the linearity test of [BLR93] over GF(2) instead
of general groups, using Fourier analysis. This analysis is due to [BCH+96].

We now look at functions f : G → H, where G = {0, 1}n and H = {0, 1}. Any linear
function is of the form

lα(X) =

n∑
i=1

αixi, α ∈ {0, 1}n

6-1

It will be more convenient if we map 0 → 1 and 1 → −1 Hence, from now on we look at
functions f : {0, 1}n → {1,−1}.. In this new notation, we write

χα(X) = (−1)lα(X)

= (−1)
∑n
i=1 αixi

Consider the set F = {f : {0, 1}n → R}. This set forms a vector space of dimension
2n, where addition is defined as (f + g)(x) = f(x) + g(x). We will show that the set
{χα : α ∈ {0, 1}n} forms an orthonormal basis under a suitably defined inner-product for F
and this basis will be useful in analysing the BLR-test. To that end, define an inner product
on F as follows:

〈f, g〉 = Ex∈{0,1}n [f(x)g(x)] =
1

2n
·
∑

x∈{0,1}n
f(x)g(x).

Observation 6.1.1. Ex[χα(x)] =

{
1 if α = 0
0 otherwise

Observation 6.1.2. Ex[χα(x) · χβ(x)] = Ex[χα+β(x)] =

{
1 if α = β
0 otherwise

Thus {χα(x)|α ∈ {0, 1}n} are an orthonormal set of vectors, and since there are 2n many
of them they form an orthonormal basis for F . Thus for any f ∈ F , we have

f =
∑

f̂αχα,

where f̂α = 〈f, χα〉 are known as the Fourier coefficients of f . This is called the Fourier
representation of f . Observe that any linear function puts all its weight on the corresponding
Fourier coefficient other functions are written as linear combinations of the linear functions.

We have the following identities about the Fourier coefficients

Observation 6.1.3 (Plancherel’s Identity). For f, g ∈ F , 〈f, g〉 =
∑
f̂α · ĝα

Proof. We know

〈f, g〉 = 〈
∑
α

f̂αχα,
∑
α

ĝαχα〉

=
∑
α

∑
β

f̂αĝβ〈χα, χβ〉 (by linearity of the inner product)

=
∑

f̂α · ĝα (by the orthonormality of χα’s)

which gives us the following two corollaries

Corollary 6.1.4 (Parseval’s Identity). For f ∈ F , ‖f‖2 = 〈f, f〉 =
∑

α f̂
2
α

Corollary 6.1.5. If f : {0, 1}n → {1,−1}, then ‖f‖2 = 〈f, f〉 = 1

6-2

6.1.2 Analysis of the Linearity test

Recall the definitions,

ε(f) = Pr
x,y

[f(x+ y) 6= f(x) + f(y)]

δ(f) = δ(f, linear)

= min
α
δ(f, χα)

= min
α

Pr
x

[f(x) 6= χα(x)]

Coppersmith’s analysis for the BLR-test on general groups showed that if ε(f) < 2
9 then

δ(f) ≤ 2ε(f). Using Fourier analysis, this can be tightened to show the following theorem
when G = {0, 1}n.

Theorem 6.1.6. For f : {0, 1}n → {1,−1}, δ(f) ≤ ε(f)

This bound seems to be optimum because if f differs from every linear function in atleast
δ values, the error probability of the BLR-test should be atleast so much. Before proving the
theorem we have the following lemma, which shows that f is closest to the linear function
on which it has the largest component.

Lemma 6.1.7. For f : {0, 1}n → {1,−1}, δ(f) = 1
2(1−maxα f̂α)

Proof. This follows from the definition of δ(f) and the Fourier coefficients

δ(f) = min
α

{
Pr
x

[f(x) 6= χα(x)]
}

= min
α

{
Ex
[1− f(x)χα(x)

2

]}
=

1

2
(1−max

α
{〈f, χα〉})

=
1

2
(1−max

α
{f̂α})

Proof of Theorem 6.1.6.

ε(f) = Ex,y
[1− f(x+ y)f(x)f(y)

2

]
=

1

2
− 1

2
Ex,y[f(x+ y)f(x)f(y)]

6-3

Let’s look at Ex,y[f(x+ y)f(x)f(y)].

Ex,y[f(x+ y)f(x)f(y)] = Ex,y
[(∑

α

f̂αχα(x+ y)
)(∑

β

f̂αχβ(x)
)(∑

γ

f̂αχγ(y)
)]

= Ex,y
[∑
α,β,γ

f̂αf̂β f̂γχα(x+ y)χβ(x)χγ(y)
]

=
∑
α,β,γ

f̂αf̂β f̂γEx
[
χα(x)χβ(x)

]
Ey
[
χα(y)χβ(y)

]
=
∑
α,β,γ

f̂αf̂β f̂γ〈χα, χβ〉〈χα, χγ〉

=
∑
α

f̂3
α

Thus we have

ε(f) =
1

2
− 1

2

∑
α

f̂3
α

≥ 1

2
− 1

2
(max

α
f̂α)

∑
α

f̂2
α

=
1

2
− 1

2
max
α

f̂α = δ(f)

Improving the amortized query complexity: For any function f , let d(f) denote
maxα f̂α. Hence, the maximum agreement of f with a linear function is (1 + d(f))/2. The
above analysis shows that the error ε(f) of the BLR-Test in this case is at most (1+d(f))/2.
Can we reduce this error? Clearly, if we repeat the BLR-test k times, and accept iff the
test accepts each time, then the probability that it accepts a function that is far from
linear drops exponentially in k. In fact, it can easily be shown that the error in this case
is (1/2 + d(f)/2)k. The k-repeated BLR-Test makes 3k queries. Hence, the error drops
roughly by a factor of 1/2 for every additional 3 queries. Can we improve this rate of
fall in error with each additional query (in the amortized sense). This quantity is called
the amortized query complexity (i.e, if a q query test has error at most ε and perfect
completeness, then the amortized query complexity is q/log2(1/ε).) This question was
studied by Samorodnitsky, Sudan and Trevisan and finally H̊astad and Wigderson [HW03]
showed the following: Consider the following test. Pick x1, . . . , xt ∈R {0, 1}n. For each pair
(i, j) ∈ [t]× [t] run the BLR-test, i.e., check if f(xi) + f(xj) = f(xi + xj). It can be shown

that the error of this test is at most 2−(t2) + d(f) while it makes just t+
(
t
2

)
queries. Thus,

the amortized query complexity of this test is 1 +O(1/
√
q) (Here q = t+

(
t
2

)
). The analysis

of this test is similar to the above analysis for the simple test. An extended version of this
test is used to improve the amortized query complexity of PCPs which in turn leads to
improved inapproximability results for MAXCLIQUE.

6-4

6.2 Introduction to Coding theory and Polynomial codes

A PCP is a rewritting of the NP proof such that the new proof is checkable. For this purpose,
we first need codes which are locally checkable (also called locally testable). We will now see
a short introduction to coding theory, consider different types of codes and their checkable
properties.

6.2.1 Codes Primer

The basic aim in coding theory, is to convert a message M into a new one E(M), such that
even after passing through a channel with noise η, M can be retrieved from E(M) by the
reciever.
A code is a function C : Σk → Σn, which converts a k-symbol message to an n-symbol
codeword.
We will use the following notation, henceforth. The size of the alphabet |Σ| = q, k denotes
the message length, n the block length. k

n is known as the rate of the code, which measures
the amount of information per symbol of the codeword. The symbol C will also be used for
the set of codewords C(Σk).

Definition 6.2.1. The distance between 2 codewords x and y is defined as d(x, y) =
∣∣{i :

xi 6= yi}
∣∣. The distance of a code C is defined as d(C) = minx 6=y d(x, y). Thus it is the

shortest distance between any two distinct codewords.

Thus, if the noise η added by the channel is at most d(C)
2 , then one can uniquely identify

(at least existentially) the codeword closest to the corrupted word. We will denote C : Σk →
Σn with distance d as a (n, k, d)Σ-code. If Σ is a finite field F(|F| = q) and C is a vector
space over F, then C is known as a linear code and denoted by [n, k, d]q-code.

From an algorithmic perspective, the following questions are interesting for a code C :
Σk → Σn

Encoding: Given m ∈ Σk, compute C(m).

Testing: Given w ∈ Σn, check if w is a valid codeword.

Decoding: Given C(m) + η s.t |η| < d(C)
2 , compute m.

In some cases, like in the context of PCPs, we are also interested in the sub-linear time
equivalent of these problems, (i.e, algorithms which can compute the above results even
without reading the entire input string, but only querying it at a few locations). It is
unlikely that encoding will have a sub-linear time algorithm since a codeword should ideally
depend on all the symbols in the message. A code which has a sub-linear time algorithm
for testing is known as a locally-testable code and similarly, a code with a sublinear-time
decoding procedure is said to be locally-decodable. We will not define these terms formally.

Walsh-Hadamard code

An example of a linear code is the Walsh-Hadamard (WH) code. It is defined over the
field F2. Given any x ∈ {0, 1}n, the Walsh-Hadamard encoding of x is a string of size 2n

6-5

where the αth-bit corresponds to the function lα(x) =
∑

i αixi,α ∈ {0, 1}n. More precisely,
WH(x)α = lα(x), ∀α ∈ {0, 1}n. It follows from the properties of linear functions (specifically
Observation 6.1.2) that the distance between any two distinct WH codewords is 2n−1. Thus,
the WH code is a [k, 2k, 2k−1]2 code. The linearity testing algorithm shows that it is locally-
testable. A local decoder for Walsh-Hadamard code is as follows. For any function f :
{0, 1}n → {0, 1}, that is supposedly close to some linear function lz, the local decoder
Dec(f) : {0, 1}n → {0, 1} is defined as follows:

Dec(f) :On input x,

1. Choose r ∈R {0, 1}n

2. Output f(x+ r)− f(r)

If f is δ-close to the Walsh-Hadamard code lz for some z ∈ {0, 1}n, then

Pr [Dec(f) decodes correctly] ≥ 1− 2δ.

Thus, the code has wonderful distance, local testability and local decodability properites.
The main weakness of this code is its poor rate, it blows-up the size of the message expo-
nentially. In the next section, we will use the Walsh-Hadamard code and linearity testing
to construct an exponential sized PCP.

For applications in constructing good (i.e, polynomial sized) PCPs, we require codes
which have a small blow-up (at most polynomially) and still have good distance and testa-
bility properties. In the next section, we will see codes with inverse polynomial rate and
good distance, testability and decodability (though not as good as the WH code in the latter
properties).

6.2.2 Polynomial Codes

In this section, we will look at codes in which the underlying alphabet Σ is some finite
field, say F. We will construct codes using low-degree univariate polynomials (of the form
p(x) =

∑d
i=0 aix

i) and low-degree multivariate polynomials (of the form p(x1, . . . , xn) =∑
e1+···+en≤d ae1,...,enx

e1
1 . . . xenn). The following property of univariate polynomials will come

very useful.

Observation 6.2.2. If p is a univariate polynomial of degree d that is not identically zero,
then p has atmost d roots in F.

This observation can be extended to the case of multivariate polynomials p that are not
identically zero as follows.

Lemma 6.2.3 (Schwartz-Zippel Lemma [Sch80, Zip79]). Let p be a multivariate polynomial
of degree d that is not identically zero,

Pr
X∈Fn

[p(X) = 0] ≤ d

|F|

6-6

Reed-Solomon codes

For a finite field F, the Reed-Solomon code (RS) is a function RS : Fk → F|F|. A mes-
sage string a0, . . . , ak is mapped to the polynomial p(x) =

∑k
i=0 aix

i and RS(a0, . . . , ak) =
(p(f1), . . . , p(f|F|)), where fis are all the elements of the field.

Clearly, this is a [k, n, n−k−1]n code where n is both the size of the field and the block-
length. These codes are not a good choice for constructing PCPs since they are “strongly”
non-locally testable, i.e at least k queries (equal to the length of the original message) have
to be made to the codeword.

Reed-Muller Codes

The Reed-Muller(RM) codes is a function RM : F(n+dd) → F|F|
n

. The message can be
looked as the coefficients of a polynomial of degree d, for a suitable d. The codeword is the
evaluation of the polynomial at all the Fn points. The Schwartz-Zippel lemma gives the
fact that two different polynomials evaluate to the same value in atmost d

|F| positions. Thus

RM is a [
(
n+d
d

)
, qn, (1− d

q)qn]q code, where q = |F|.
The Reed-Muller codes have good rates and the local-testability property. The local

testing of these codes will be the topic of the next lecture.

6.3 PCP from WH codes and Linearity testing

We now give use the linearity test to construct an exponential sized PCP, and thus, show
that CIRCUIT-SAT ∈ PCP1,1−ε(O(n2), O(1)). The decision problem of CIRCUIT-SAT is
as follows: given a circuit C with gates labelled from 1 to n and each gate having fan-in
2, does there exists an input assignment on which the circuit evaluates to 1? CIRCUIT-
SAT∈ NP since we can consider any assignment to the variables which cause the circuit to
evaluate to 1 as a certificate. We will now give a constant query, albeit exponential sized
PCP for CIRCUIT-SAT.

Any assignment (both satisfying and non-satisfying) to the gates of the circuit C can
be viewed as a function z : {0, 1}n → {0, 1}. The PCP will include the Walsh-Hadamard
encoding of a satisfying assignment. Local testability of WH codes imply that we can check
if the given string is actually a valid codeword or not. But we also need to check if it
is the encoding of a satsifying assignment, i.e., an assignment that satisfies all the gates
(including the output gate). For this purpose, we can express the gate constraints as a
quadratic function as follows (assume w.l.o.g that the circuit contains only AND and NOT
gates). For each gate i with inputs j and k,

Pi(z) =



zi − zjzk if the i-th gate is an AND gate with inputs from

gates j and k.

zi − (1− zj) if the i-th gate is a NOT gate with input from

gate j.

1− zj if the i-th gate is an output gate with input from

gate j.

0 if the i-th gate is an input gate (i.e. i ≤ m).

6-7

Thus the question that we now ask is whether there exists an assignment z to the different
gates such that ∀ gates i, Pi(z) = 0. Since the constraints for the gates includes quadratic
constraints, the PCP proof, in addition to the Walsh-Hadamard encoding of the assignment
z, will also include a quadratic equivalent of the Walsh-Hadamard codes. More precisely,
the PCP proof for an assignment z is as follows

WH(z) =
{
lα(z)

∣∣α ∈ {0, 1}n}
Quad(z) =

{ n∑
i=1

n∑
j=1

Mijzizj
∣∣∀M ∈ {0, 1}n2

}
We now describe the verification of the PCP.

Assume that the proof consists of functions A : {0, 1}n → {0, 1} and B : {0, 1}n2 →
{0, 1}, the following tests are performed. (The functions A(z) and B(z) are supposedly
WH(z) and Quad(z), but ofcourse, the verifier needs to check that this is indeed the case).

• Codeword Test : This test checks whether the function A and B are linear functions
or far away from linear functions.

– Pick α, β ∈R {0, 1}n. Check if A(α) +A(β) = A(α+ β)

– Pick M1,M2 ∈R {0, 1}n×n. Check if B(M1) +B(M2) = B(M1 +M2).

• Consistency Test : This test aims to check whether the A and B are the linear and
quadratic functions of the same assignment z. For α, β ∈ {0, 1}n, consider the matrix
M , where Mi,j = αiβj . Thus

n∑
i=1

n∑
j=1

Mi,jzizj =
(n∑
i=1

αizi

)(n∑
i=1

βizi

)
This suggest the following natural test: “Pick α, β ∈R {0, 1}n and let Mi,j = αiβj .
Check if B(M) = A(α)A(β).” However, since we only know that A and B are close
to being linear (if they are far, the Codeword Test rejects), we perform the following
self-corrected version of the above test: “Pick α, β ∈R {0, 1}n and let Mi,j = αiβj .
Pick N ∈R {0, 1}n×n. Check if B(M +N)−B(N) = A(α) ·A(β).”

• Circuit test : We now need to check that z satisfies all the gates. Instead of testing this
for all the gates which is very query intensive, we instead check if z satisfies a random
linear combination of all the gates. More precisely, for each gate g pick rg ∈R {0, 1}
and consider the function p =

∑
g rgPg which can be written as the sum of quadratic

terms, linear forms and a constant. Let p =
∑n

i=1

∑n
j=1Mi,jzizj +

∑n
i=1 αizi+c. Pick

N ∈R {0, 1}n×n and z ∈ {0, 1}n and check ifB(M+N)−B(N)+A(α+z)−A(z)+c = 0.

Thus we have a PCP with 16 = O(1) queries and O(n2) randomness. Furthermore, it
is clear that the above test has perfect completeness. Using testability of WH-codes and
Freivald’s Quadratic testing analysis [Fre79] (omitted here), we can show that there exists
an ε ∈ (01,) such that if the test accepts wit probability greater than 1− ε, then the circuit
C is satisfiable (see scribe notes of Lecture 4 in [Har07] for the soundness analysis). We
thus have,

6-8

Theorem 6.3.1. There exists ε ∈ (0, 1) such that

CIRCUIT-SAT ∈ PCP1,1−ε(O(n2), 14).

References

[BCH+96] Mihir Bellare, Don Coppersmith, Johan Håstad, Marcos A. Kiwi, and Madhu
Sudan. Linearity testing in characteristic two. IEEE Transactions on Information
Theory, 42(6):1781–1795, November 1996. (Preliminary version in 36th FOCS, 1995).
doi:10.1109/18.556674.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. J. Computer and System Sciences, 47(3):549–595, De-
cember 1993. (Preliminary Version in 22nd STOC, 1990). doi:10.1016/0022-0000(93)
90044-W.

[Fre79] Rusins Freivalds. Fast probabilistic algorithms. In Jiŕı Becvár, ed., Proc. 8th Sym-
posium of Mathematical Foundations of Computer Science, volume 74 of LNCS, pages
57–69. Springer, 1979. doi:10.1007/3-540-09526-8_5.

[Har07] Prahladh Harsha. CMSC 39600: PCPs, codes and inapproximability , 2007. A course
on PCPs at the University of Chicago (Autumn 2007).

[HW03] Johan Håstad and Avi Wigderson. Simple analysis of graph tests for linearity and
PCP. Random Structures and Algorithms, 22(2):139–160, 2003. (Preliminary Version in
18th IEEE Conference on Computational Complexity, 2001). doi:10.1002/rsa.10068.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. J. ACM, 27(4):701–717, October 1980. doi:10.1145/322217.322225.

[Sud99] Madhu Sudan. 6.893: Approximability of optimization problems, 1999. (A course on
Approximability of Optimization Problems at MIT, Fall 1999).

[SW06] Amir Shpilka and Avi Wigderson. Derandomizing homomorphism testing in general
groups. SIAM J. Computing, 36(4):1215–1230, 2006. (Preliminary version in 36th STOC,
2004). doi:10.1137/S009753970444658X.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W.
Ng, ed., Proc. International Symposium of Symbolic and Algebraic Computation
(EUROSAM), volume 72 of LNCS, pages 216–226. Springer, 1979. doi:10.1007/

3-540-09519-5_73.

6-9

http://dx.doi.org/10.1109/18.556674
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1007/3-540-09526-8_5
http://www.tcs.tifr.res.in/~prahladh/teaching/07autumn/
http://dx.doi.org/10.1002/rsa.10068
http://dx.doi.org/10.1145/322217.322225
http://people.csail.mit.edu/madhu/FT99/course.html
http://dx.doi.org/10.1137/S009753970444658X
http://dx.doi.org/10.1007/3-540-09519-5_73
http://dx.doi.org/10.1007/3-540-09519-5_73

	Linearity Testing and Fourier Analysis
	Fourier Analysis
	Analysis of the Linearity test

	Introduction to Coding theory and Polynomial codes
	Codes Primer
	Polynomial Codes

	PCP from WH codes and Linearity testing

