
Limits of Approximation Algorithms 15 April, 2010 (TIFR)

Lec. 11: H̊astad’s 3-bit PCP

Lecturer: Prahladh Harsha Scribe: Bodhayan Roy & Prahladh Harsha

In last lecture, we proved the hardness of label cover problem. We showed that it is
NP-hard to distinguish if a given label cover instance is perfectly satisfiable or if every
labelling satisfies at most a δ-fraction of edges. However, this was over some large alphabet.
Today, we will be interested in constructed PCPs over smaller alphabets, in fact, the binary
alphabet. We will show H̊astad’s PCP construction which is a 3 query PCP over the binary
alphabet. We will then use this result to show tight inapproximability results for problems
such as MAX3SAT, MAX3LIN2.

The references for this lecture include Lecture 7 of the DIMACS tutorial on Limits of
approximation [HC09], lecture 16 from a course on PCPs by Venkatesan Guruswami and
Ryan O’Donnell at the University of Washington, Seattle [GO05] and a guest column in
SIGACT News on inapproximability results from long codes by Subhash Khot [Kho05].

11.1 Recap: Hardness of Label-Cover

Recall that the Label-Cover problem was defined as follows:

Definition 11.1.1 (Label-Cover). An instance I of the Label-Cover problem with
labels L and R is specified by a pair (G,Π) where G = (U, V,E) is a bipartite graph, and
Π = {πe : L→ R|e ∈ E}, is a set of functions (also called projections), one for each edge
(u, v) ∈ E.

A labeling A : U → L,B : V → R, is said to satisfy an edge (u, v) iff π(u,v)(A(u)) = B(v).
The value of an instance is the maximal fraction of edges satisfied by any such labeling.

For any δ ∈ (0, 1), the gap problem gap1,ε-LC(L,R) is the promise problem of deciding
if a given instance has value 1 or at most ε. More precisely, the YES and NO of gap1,ε-LC
are given as follows.

YES =
{
I : ∃ (A : U → L, B : V → R) such that ∀(u, v) ∈ E, π(u,v)(A(u)) = B(v)

}
NO =

{
I : ∀ (A : U → L, B : V → R) ,

∣∣{(u, v) ∈ E : π(u,v)(A(u)) = B(v)}
∣∣ ≤ ε|E|}

In the last few lectures, we proved the following inapproximability result for Label-Cover.

Theorem 11.1.2. ∀δ ∈ (0, 1), there exist alphabets L,R such that |L|, |R| ≤ exp
(
1
δ

)
, such

that the corresponding gap problem gap1,δ-LC(L,R) is NP-hard.

Note, that the above hardness for Label-Cover is great, but unfortunately is over a
large alphabet.

11.2 PCPs over the Boolean alphabet

Using the above NP-hardness of Label-Cover, H̊astad constructed the following PCP for
NP over the Boolean alphabet [H̊as01].

11-1

Theorem 11.2.1 (H̊astad’s 3-bit PCP). For all ε, δ ∈ (0, 1), there exists a PCP for SAT
over the Boolean alphabet with the following properties :

1. The verifier queries 3 bits and its predicate is of the form xi1 ⊕ xi2 ⊕ xi3 = b.

2. Completeness: 1− ε.
I.e., if ϕ is satisfiable, then there exists a PCP π such that Pr[V π(ϕ) = 1] ≥ 1− ε.

3. Soundness: 1
2 + δ.

I.e., if ϕ is unsatisfiable, then for all proofs π, Pr[V π(ϕ) = 1] ≤ 1
2 + δ

Note that this result is almost optimal. If NP 6= P, we cannot reduce the number of
queries to 2, since the corresponding PCP class, PCP[O(log n), 2] is in fact in P (see problem
set 1). Furthermore, we also know that the soundness cannot be reduced below 1/2. On the
completeness side, we can show that one can actually obtain PCP (albeit adaptive PCPs)
with perfect completeness (i.e., 1 as opposed to 1− ε) [GLST98].

Coming back to the non-adaptive PCP in Theorem 11.2.1, because of the nature of
thePCP verifier’s queries and predicate (xi1⊕xi2⊕xi3 = b), we have the following hardness
result for approximating the number of satisfied equations of a given MAX3LIN2 system.

Corollary 11.2.2 (Hardness of MAX3LIN2). For all ε, δ ∈ (0, 1), it is NP hard to distin-
guish if a given system of linear equations over GF(2) (with 3 variables per equation) is at
least (1− ε)-satisfiable or at most (12 + δ)-satisfiable.

The above corollary states that it is NP-hard to approximate the number of satisfied
linear equations over GF(2) to a factor better than 1/2 + ε for any ε > 0. Note this is
optimal since it is trivial to give a 1/2-approximation, a random assignment will do.

Let us now show how this corollary implies a hardness for MAX3SAT. We will do this by
encoding every 3LIN2 condition by a constant number of 3SAT conditions. More precisely,
we will do the following. Replace the the 3LIN2 condition xi1⊕xi2⊕xi3 = 1 by the following
4 3SAT conditions xi1 ∨ xi2 ∨ xi3 , xi1 ∨ xi2 ∨ xi3 , xi1 ∨ xi2 ∨ xi3 and xi1 ∨ xi2 ∨ xi3 and the
3LIN2 condition xi1 ⊕ xi2 ⊕ xi3 = 0 by the 4 3SAT conditions xi1 ∨ xi2 ∨ xi3 , xi1 ∨ xi2 ∨ xi3 ,
xi1 ∨ xi2 ∨ xi3 and xi1 ∨ xi2 ∨ xi3 . It is easy to check that if the source 3LIN2 condition is
satisfied, all the 4 target 3SAT conditions are satisfied, while if source 3LIN2 condition is not
satisfied, exactly 3 of the 4 3SAT conditions are satisfied. Using this transformation, if the
MAX3LIN2 is α-satisfiable, then the target MAX3SAT instance is exactly (α+3

4)-satisfiable
(since α · 1 + (1− α) · 34 = α+3

4). We thus have the following corollary.

Corollary 11.2.3 (Hardness of MAX3SAT). For all ε, δ ∈ (0, 1), it is NP hard to distin-
guish if a MAX3SAT instance is at least (1− ε)-satisfiable or at most (78 + δ)-satisfiable.

Once again, this is optimal, since it is trivial to get a 7/8-approximation for MAX3SAT,
a random assignment will do.

11.3 Proof Overview of Theorem 11.2.1

How does one convert the hardness of Label-Cover into a 3-query PCP with the following
property? If the instance is an YES instance, then there exists a proof such that the verifier

11-2

must accept the PCP with probability at least 1 − ε, and if it is a NO instance, then for
any proof,the verifier must accept with probability at most 1

2 + δ.
In the Label-Cover world, the verifier could expect as proof the label for every vertex

in U∪V . However, this is not over the Boolean alphabet. So, instead the verifier now expects
the prover to provide the encoding of every label over a binary alphabet (say given by fu).
Given such an encoding the verifier needs to check two things for a random (u, v) ∈ E.

• Codeword Test:
There exist l ∈ L and r ∈ R such that fu is a valid encoding of l and fv is a valid
encoding of r.

• Consistency test:
The above l and r obey π(u,v)(l) = r.

Note that the verifier is allowed only one test of the form xi1 ⊕ xi2 ⊕ xi3 = b to do both the
above checks. What is a suitable encoding that allows the verifier to do all of this?

11.3.1 The Long Code

Bellare, Goldreich and Sudan [BGS98] proposed the long code as a natural encoding to
do the above tests. The long code, as the name suggests, is the longest possible binary
encoding without any redundancy. The long code is defined as follows. A label l ∈ L is
mapped to a string of length 2|L|. Given any f ∈ [2|L|], we can interpret this f as a function
f : L → {1,−1}. The f -th bit of the long code of l is defined to be f(l). Thus, the long
code of l is the concatenation of the evaluations of every possible function from L to {1,−1}
at the the point l, i.e., longl = (f(l)|f : L → {1,−1}). Notice that the long code maps a
string of length log |L| to a string of length 2|L| (a doubly exponential blowup!) The longl
is a mapping from the set of functions from L to {1,−1} to {1,−1}.

Long code can be alternately viewed as dictator functions. A function f : {1,−1}m →
{1,−1} is said to be a dictator if there exists i ∈ [m] such that f(x1, . . . , xm) = xi for all
(x1, . . . , xm) ∈ {1,−1}m. Recall that a long code is a function longl : {1,−1}L → {1,−1}
where longl(x1, . . . , xL) = xl Here we are viewing the functions from L to {1,−1} in its truth
table form – a string of length 2|L|. Depending on the context, we will refer to long-codes
as dictators or vice-versa.

We now need to design a suitable test that will both check if the given words are
actually the long codes of some labels and furthermore that these labels satisfy the projection
constraint. We will first see how we can achieve just the former goal (check if a given function
is dictator) and later see how we can adapt this test to also perform the consistency test.

11.4 Dictator Tests/Long-code Tests

We need to check if a given function f : {1,−1}m → {1,−1} is a dictator test. Furthermore,
we are constrained by the fact that the test can query the function at only 3 locations and the
acceptance predicate must be of the form xi1 ⊕xi2 ⊕xi3 = b. We now observe that dictator
functions are linear functions, in fact, longl = χ{l}. That is, the long codes are precisely

11-3

the linear functions corresponding to the singleton sets. Recall that the BLR-test checks if
a given function is linear and furthermore, it is precisely of the form “xi1 ⊕ xi2 ⊕ xi3 = b”.

BLR-Testf : 1. Choose x, y ∈R {1,−1}m

2. Accept if f(x)f(y) = f(xy).

Clearly, dictators, being linear functions, pass the above test with probability 1 and
functions that are “far from linear” are rejected. On the other hand, other linear functions
such as χS for non-singleton sets S also pass the above test with probability 1. How does
one modify the above test such that the acceptance probability corresponding to χS for
non-singleton S is reduced. H̊astad suggested the following modification by adding a slight
noise to the BLR-Test which reduces the acceptance probability for χS for large |S| by
compromising on perfect completeness.

ε-perturbed-BLR-Testf : 1. Choose x, y ∈R {1,−1}m

2. Pick µ ∈ {1,−1}L (noise vector) as follows:

µi ←−

{
1 with probability 1− ε
−1 with probability ε

3. Set z ← xyµ, (i.e., zi = xiyiµi, ∀i ∈ [m])

4. Accept if f(z) = f(x)f(y)

Clearly, if f is a dictator (i.e, f = χ{i}) then the probability that f passes the test is
precisely the probability that µi = 1, which is 1−ε. We thus have the following completeness
claim.

Claim 11.4.1 (Completeness). If f = χ{i} for some i ∈ [m] (i.e., f is a dictator), then

Pr
x,y,µ

[f(z) = f(x)f(y)] = 1− ε.

Soundness of the ε-perturbed-BLR-Test is given by the following claim.

Claim 11.4.2 (Soundness). Suppose f : {1,−1}m → {1,−1} satisfies

Pr[f passes ε-perturbed-BLR-Test] ≥ 1

2
+ η

then f “resembles” a dictator in the following sense:

∃S ⊆ [L], such that |S| ≤ O
(

1

ε
log

1

η

)
and |f̂(S)| ≥ 2η.

In other words, if f passes the εperturbed-BLR-Test with probability bounded away from
1/2, then it must be the case that f is co-related with a linear function χS where |S| is
small (i.e, even though f is not a dictator it is very much like a function of a few variables)!

11-4

Proof. We can write the acceptance probability of εperturbed-BLR-Test as follows.

Pr[f passes ε-perturbed-BLR-Test] = E
x,y,µ

[
1 + f(x)f(y)f(z)

2

]
.

Thus, if Pr[acc] ≥ 1/2 + η, it must be the case that Ex,y,µ [f(x)f(y)f(x, yµ)] ≥ 2η. Using

the Fourier expansion f(x) =
∑
f̂SχS(x), we have

E
x,y,µ

[f(x)f(y)f(xyµ)] =
∑
S,T,U

f̂S f̂T f̂U · E
x,y,µ

[χS(x)χT (y)χU (xyµ)]

=
∑
S,T,U

f̂S f̂T f̂U · E
x

[χS(x)χU (x)] · E
y

[χT (y)χU (y)] · E
µ

[χU (µ)]

=
∑
S

f̂3S · Eµ [χS(µ)]

We can now compute Eµ [χS(µ)] as follows:

E
µ

[χS(µ)] = E
µ

[∏
i∈S

µi

]
=
∏
i∈S

E
µi

[µi]

=
∏
i∈S

(1− 2ε) = (1− 2ε)|S|.

We thus, have

E
x,y,µ

[f(x)f(y)f(xyµ)] =
∑
S

f̂3S · (1− 2ε)|S|

=
∑
S

f̂2S ·
(
f̂S · (1− 2ε)|S|

)
= E

S∼f̂2S

[
f̂S · (1− 2ε)|S|

]
Since E

[
f̂S · (1− 2ε)|S|

]
≥ 2η, there exists an S such that f̂S · (1 − 2ε)|S| ≥ 2η. Clearly,

this S satisfies that f̂S ≥ 2η and (1− 2ε)|S| ≥ 2η which implies that |S| ≤ O
(
1
ε log 1

η

)
.

11.5 H̊astad’s 3-bit PCP

We now need to compose the above 3-bit dictator test with the Label-Cover prob-
lem to obtain a 3-bit PCP. We proceed as follows. Let I = (G = (U, V,E),Π) be the
Label-Cover. The verifier needs to check if the instance I is an YES or a NO instance
of gap1,δ-LC. For this purpose, the verifier expects as proof the long code of all the la-

bels of the vertices in U ∪ V (i.e., fu : {1,−1}L → {1,−1}, ∀u ∈ U and fv : {1,−1}R →
{1,−1},∀v ∈ V). The verifier checks if all these functions are valid long codes and that the
long codes are encodings of label that satisfy the projections Π as follows.

Notation: Given x ∈ {1,−1}R and π : L→ R, let x◦π ∈ {1,−1}L be defined as follows:
(x ◦ π)i = xπ(i),∀i ∈ L.

11-5

Håstad’s 3-bit PCPε:

Input: Label-Cover instance I = (G = (U, V,E),Π).

Proof: fu : {1,−1}L → {1,−1},∀u ∈ U and fv : {1,−1}R → {1,−1},∀v ∈ V .

1. Pick (u, v) ∈R E.

2. Perform the following consistency check for (fu, fv, πuv, ε)
(for ease of notation, denote fu by f , fv by g, and πuv by π)

(a) Pick x ∈R {1,−1}R, y ∈R {1,−1}L.

(b) Construct µ ∈ {1,−1}L as follows

µi =

{
1 with probability 1− ε,
−1 with probability ε.

(c) Set z ← (x ◦ π)yµ.

(d) Accept if f(z) = g(x)f(y).

Clearly, the above PCP has the desired acceptance predicate. Completeness is given by
the proposition below.

Proposition 11.5.1 (Completeness). If the instance (G,Π) is an YES instance of gap1,δ-LC(L,R),

then there exists fu : {1,−1}L → {1,−1},∀u ∈ U and fv : {1,−1}R → {1,−1}, ∀v ∈ V
such that Pr[Håstad’s 3-bit PCPε accepts] = 1− ε.

Proof. Let A : U → L and B : V → R be the labeling that satisfies all the edges of the
Label-Cover instance. Define functions fu and fv to be long codes of the labels as follows.

fu(x1, . . . , xL) = xA(u), fv(x1, . . . , xR) = xB(v).

It is easy to see that

Pr[Håstad’s 3-bit PCPε accepts] = Pr
(u,v),x,y,µ

[fu ((x ◦ πu,v)yµ) = fv(x)fu(y)]

= Pr
[
(x ◦ πu,v)A(u) yA(u)µA(u) = xB(v)yA(u)

]
= Pr

[
xπu,v(A(u))µA(u) = xB(v)

]
= Pr[µA(u) = 1] [Since πu,v(A(u)) = B(v)]

= 1− ε

11.5.1 Soundness analysis

We would like to show that if Pr[acc] > 1
2 + η then there exists a labelling A : U → L,B :

V → R that satisfies at least δ fraction of the edge constraints. But is this true?

11-6

11.5.1.1 Folding: Derailed by all the 1’s proof

Consider the all 1’s proof. In other words the set of functions fu(x) = 1, fv(y) = 1, ∀u ∈
U, v ∈ V, x, y. Clearly, the PCP verifier accepts this proof with probability 1. This in the
{0, 1} world corresponds to the case that when all the checks xi1 ⊕ xi2 ⊕ xi3 = b had b = 0,
then clearly there exists a solution that satisfies all the equations, the all 0′s solution.

How do we get around this hurdle? Observe that a valid proof which comprises of long
codes cannot be all 1′s, since a long code comprises an equal number of 1’s and -1’s. A long
code is balanced since χ{i}(−x) = −χ{i}(x). If we ensure that all the functions fu and fv
satisfy fu(−x) = −fu(x) and fv(−y) = −fv(y), then the all 1’s proof is avoided. But how
can we do this without increasing the number of queries. We say that a proof is folded, if
f(−x) = −f(x), ∀x. We can ensure the proof is folded by observing the following probing
convention. For each of the functions fu (similarly fv) and for every pair of inputs (x,−x)
only one of fu(x) or fu(−x) is given in the proof. If the verifier needs to probe fu(x), if it
is present in the proof it reads of the value, else it reads fu(−x) and sets fu(x) = −fu(−x).
By the above probing convention, we can assume that the proof is folded and the all 1’s
spurious proof is avoided. It can be checked that a folded proof satisfies the following
lemma.

Claim 11.5.2. If f : {1,−1}L → {1,−1} is folded (i.e. f(x) = −f(−x), ∀x), then for even
sized sets S, we have f̂S = 0 (in particular, f̂∅ = 0).

Proof. We will only prove the case S = ∅, which is what we require in soundness analysis.

f̂∅ = E
x
[f(x)] = E

x

[
f(x) + f(−x)

2

]
= 0.

The general case for |S| > 0 is similar.

11.5.1.2 Soundness analysis continued

Let us resume the soundness analysis. First for some notation. Given any S ⊆ L, and
π : L→ R, define the following sets.

π(S) = {j ∈ R| there exist an l in S such that π(l) = r}
π2(S) = {j ∈ R| there exist an odd number of l’s in S such that π(l) = r}

Claim 11.5.3. For all x ∈ {1,−1}R, we have χS(x ◦ π) = χπ2(S)(x).

Proof.

χS(x ◦ π) =
∏
i∈S

(x ◦ π)i =
∏
i∈S

xπ(i) =
∏

j∈π(S)

xj =
∏

j∈π2(S)

xj = χπ2(S)(x).

Coming back to the soundness analysis, the acceptance probability of the PCP verifier
can be written as follows.

Pr[Håstad’s 3-bit PCPε accepts] = E
(u,v),x,y,µ

[
1 + fu ((x ◦ πu,v)yµ) fv(x)fu(y)

2

]
.

11-7

Thus, if the PCP verifier accepts with probability at least 1
2 + δ, we have that

E
(u,v),x,y,µ

[fu ((x ◦ πu,v)yµ) fv(x)fu(y)] ≥ 2δ.

Hence for atleast δ-fraction of edges (u, v), we have

E
x,y,µ

[f((x ◦ π)yµ)g(x)f(y)] ≥ δ,

where we have followed the convention that fu = f, fv = g and πu,v = π. We can now
rewrite this expression using Fourier expansion

E
x,y,µ

[f((x ◦ π)yµ)g(x)f(y)] =
∑
S,T,U

f̂S ĝT f̂U · E[χS((x ◦ π)yµ) · χT (x) · χU (y)]

=
∑
S,T,U

f̂S ĝT f̂U · E
x
[χS(x ◦ π) · χT (x)] · E

y
[χS(y)χU (y)] · E

µ
[χS(µ)]

=
∑
S,T

f̂2S · ĝT · Ex [χπ2(S)(x) · χT (x)] · E
µ

[χS(µ)]

=
∑
S

f̂2S · ĝπ2(S) · (1− 2ε)|S|

We thus have
∑

S f̂
2
u(S) · f̂v(π2(S)) · (1− 2ε)|S| > δ for at least δ-fraction of edges.

11.5.1.3 Decoding a labeling from the fu’s and fv’s

Since the fu : {1,−1}L −→ {1,−1},∀u ∈ U are Boolean functions, we have that
∑

S f̂u
2
(S) =

1. This lets us define the following (randomized) labeling A : U → L as follows.

For each u ∈ U do

1. Pick set S with probability f̂2u(S).

2. Set A(u)←−R S (i.e., a random element from the set S)

Note that since f̂u(∅), we never pick the empty set is step 1. Similarly, we can define a
labeling B : V → R as follows.

For each v ∈ V do

1. Pick set T with probability f̂2v (T).

2. Set B(v)←−R T (i.e., a random element from the set T)

What is the fraction of edges satisfied by this labeling?

Pr
(u,v)∈RE

[(u, v) is satisfied] = Pr
(u,v)∈RE

[πu,v(A(u)) = B(v)] ≥
∑
S

∑
T⊆π(S)

f̂2u(S) · f̂2v (T) · 1

|S |

This follows from the below argument: first pick an S with probability f̂2u(S), then pick T

with probability f̂2v (T) where T ⊂ π(S), now set the label of v to be a random element of

11-8

T . Since T is picked such that T ⊆ π(S), clearly this random element has a pre-image in
S. The probability that this pre-image is picked to be the label of u is at least 1/|S|. We

now relate this expression to
∑

S f̂
2
u(S) · f̂v(π2(S)) · (1− 2ε)|S| which we know is at least δ

for at least δ-fraction of the edges.

Pr
(u,v)∈RE

[(u, v) is satisfied] =
∑

S,T⊆π(S)

f̂2u(S)f̂2v (T)
1

|S |

≥
∑
S

f̂2u(S)f̂2v (π2(S))
1

|S |
(dropping all the remaining positive terms)

=
∑
S

(
f̂u(S)f̂v(π2(S))

1√
|S|

)2

·
∑
S

f̂2u(S) (by Parsevals)

≥

(∑
S

f̂2u(S)f̂v(π2(S)) · 1√
|S|

)2

(Cauchy-Schwarz)

≥ 4ε

(∑
S

f̂2u(S)f̂2v (π2(S))(1− 2ε)|S|

)2

where in the final step we have used the inequality 1/
√
x ≥

√
4ε(1 − 2ε)x1 Now, since∑

S f̂
2
u(S) · f̂v(π2(S)) · (1− 2ε)|S| > δ for at least δ-fraction of edges, we have

Pr
(u,v)∈RE

[(u, v) is satisfied] ≥ δ · 4εδ2 = 4εδ3

More precisely, we have shown the following

Proposition 11.5.4 (Soundness). For every δ, ε > 0, there exists a δ′ = 4εδ3 such that the
following holds. Let I = (G,Π) be a Label-Cover instance such that there exists fu, fv’s
for which

Pr[Håstad’s 3-bit PCPε accepts] ≥ 1

2
+ δ,

then there exist labelings A : U → L and B : V → R that satisfy at least δ′-fraction
of the edges in Label-Cover instance (in other words (G,Π) is not a NO instance of
gap1,δ′-LC(L,R)).

This completes the construction and analysis of H̊astad’s 3-bit PCP.

11.6 Other inapproximability results

Recall the broad outline for proving inapproximability of MAX3LIN2. In the first step, we
designed a dictator test whose predicate is exactly the constraint of MAX3LIN2. In the
second step, we composed this dictator test with the hardness result for Label-Cover
to obtain a PCP with the appropriate acceptance predicate. This is a general recipe for

1Proof of inequality: 1/
√
4εx ≥ e−2εx (since 1/z ≥ e−z for z > 0 and hence 1/

√
z ≥ e−z/2. Now,

e−2εx ≥ (1− 2ε)x since e−z ≥ 1− z for z > 0).

11-9

proving other inapproximability results. We first design a tailor-made dictator test for the
problem and then compose it with the labelcover hardness result.

For instance, for the problem MAX3SAT, we can design the following dictator test.

MAX3SAT-Dictator Test:

1. Pick x, y ∈R {1,−1}L

2. Set string z ∈ {1,−1}L as follows:

If xi = 1, zi = −yi
If xi = −1, zi = yi with probability 1− ε, and −yi with probability ε

3. Accept unless f(x) = f(y) = f(z) = 1.

Composing this with the labelcover hardness result we obtain the following result.

Theorem 11.6.1 (Hardness of MAX3SAT [H̊as01]). For all δ ∈ (0, 1), it is NP hard to
distinguish if a MAX3SAT instance is perfectly satisfiable or at most (78 + δ)-satisfiable.

Note that this theorem is an improvement over Corollary 11.2.3 as it achieves perfect
completeness.

References

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and
nonapproximability—towards tight results. SIAM J. Computing, 27(3):804–915, June
1998. (Preliminary Version in 36th FOCS, 1995). eccc:TR95-024, doi:10.1137/

S0097539796302531.

[GLST98] Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca Trevisan. A
tight characterization of NP with 3-query PCPs. In Proc. 39th IEEE Symp. on Founda-
tions of Comp. Science (FOCS), pages 18–27. 1998. doi:10.1109/SFCS.1998.743424.

[GO05] Venkatesan Guruswami and Ryan O’Donnell. CSE 533: The PCP Theorem and
hardness of approximation, 2005. A course on PCPs at the University of Washington,
Seattle (Autumn 2005).

[H̊as01] Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July
2001. (Preliminary Version in 29th STOC, 1997). doi:10.1145/502090.502098.

[HC09] Prahladh Harsha and Moses Charikar. Limits of approximation algorithms: PCPs
and unique games, 2009. (DIMACS Tutorial, July 20-21, 2009). arXiv:1002.3864.

[Kho05] Subhash Khot. Guest column: inapproximability results via long code based PCPs.
SIGACT News, 36(2):25–42, 2005. doi:10.1145/1067309.1067318.

11-10

http://eccc.hpi-web.de/report/1995/024
http://dx.doi.org/10.1137/S0097539796302531
http://dx.doi.org/10.1137/S0097539796302531
http://dx.doi.org/10.1109/SFCS.1998.743424
http://www.cs.washington.edu/education/courses/533/05au/
http://www.cs.washington.edu/education/courses/533/05au/
http://dx.doi.org/10.1145/502090.502098
http://dimacs.rutgers.edu/Workshops/Limits/
http://dimacs.rutgers.edu/Workshops/Limits/
http://arxiv.org/abs/1002.3864
http://dx.doi.org/10.1145/1067309.1067318

	Recap: Hardness of Label-Cover
	PCPs over the Boolean alphabet
	Proof Overview of [Theorem]thm:hastad
	The Long Code

	Dictator Tests/Long-code Tests
	Håstad's 3-bit PCP
	Soundness analysis
	Folding: Derailed by all the 1's proof
	Soundness analysis continued
	Decoding a labeling from the fu's and fv's

	Other inapproximability results

