
Limits of Approximation Algorithms 22 April, 2010 (TIFR)

Lec. 12: Unique-Games Hardness of MAXCUT

Lecturer: Prahladh Harsha Scribe: Girish Varma

The main topic of today’s lecture is the inapproximability of MAXCUT. Recall that

MAXCUT has a αGW

(
= min−1<ρ<1

2 cos−1(ρ)
π(1−ρ) = 0.87856

)
-approximation algorithm due to

Goemans and Williamson. We will show that if we assume the hardness of a an easier prob-
lem than Label-Cover (in fact, a special case called Unique-Label-Cover, we can show
that gap 1−ρ

2
−ε, cos

−1(ρ)
π

+ε
-MAXCUT is hard for every ρ ∈ (−1, 0) and ε > 0 [KKMO07].

In particular, choosing the appropriate ρ, we can show that the Goemans-Williamson algo-
rithm is tight.

The references for this lecture include Lecture 9 of the DIMACS tutorial on Limits
of approximation [HC09], lectures 17,18 and 19 from a course on PCPs by Venkatesan
Guruswami and Ryan O’Donnell at the University of Washington, Seattle [GO05], the
original MAXCUT inapproximability paper [KKMO07], and a guest column in SIGACT
News on inapproximability results from long codes by Subhash Khot [Kho05].

12.1 Dictator Tests

As in the case MAX3LIN2, we will first design a tailor made dictator test which has the same
predicate as MAXCUT (i.e., it is a 2-query test with the 6= predicate) and then compose
this test with the Label-Cover problem. In this section, we will be concerned with
constructing a suitable dictator test which distinguishes between dictators and functions
“far-from-dictators” and defer the actual inapproximability result to later.

Given a boolean function f : {0, 1}m → {0, 1}, we will check whether it is a dictator
function(ie. f(x) = xi for some i ∈ [n]) or not using only values of f at two random points
in its domain. We will translate f to the ±1 world by considering 0 as 1 and 1 as −1. So
from now on will assume it to be of the form f : {±1}m → {±1}. Furthermore the test
must be constrained by the fact that it can query only 2 locations and accept if the value
of the function is not the same at these locations.

Below is a first stab at such a dictator test.

6=-test (first attempt)

1. Pick x uniformly at random from {±1}m

2. Set y ← −x

3. Accept iff f(x) 6= f(y)

Though dictators pass this test, any χS with |S| odd will also pass the test with probability
1. Another function that passes this test is the majority function(f(x) = sign(

∑
i xi))

assuming n is odd. In fact, any odd function (i.e, f(−x) = −f(x)) will pass this test with
probability 1.
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12.1.1 2-query 6=-test for Dictators

Khot, Kindler Mossel and O’Donnell [KKMO07] suggested the following test which picks a
pair of points (x, y), which instead of being antipodal as above, satisfies that E[dist(x, y)] =
(1− ρ)/2 for some ρ ∈ (−1, 0).

6=ρ-test

1. Pick x←R {±1}m

2. Set µ as follows:

∀i ∈ [m], indepedently set µi ←

{
−1 with probability (1−ρ)

2

1 with probability (1+ρ)
2 .

3. Set y ← xµ

4. Accept iff f(x) 6= f(y)

Since ρ ∈ (−1, 0), with probability more that half, each µi is −1 and E[µi] = ρ.

Completeness: If f(x) = xi for some i ∈ [m] (i.e., f is a dictator) then 6=ρ-test passes
when

f(x) 6= f(y) ⇐⇒ xi 6= xiµi ⇐⇒ µi 6= 1

which happens with probability (1− ρ)/2, which is greater than 1/2 since ρ ∈ (−1, 0).

Soundness: We will now try to understand the probability of passing the 6=-test by
functions that are not dictators. Let us first understand the acceptance probability of
6=ρ-test.

Pr[6=ρ-test accepts f ] = Pr
x,µ

[f(x) 6= f(µx)]

= Ex,µ
[

1− f(x)f(µx)

2

]
=

1

2
− 1

2
Ex,µ[f(x)f(µx)]

It will be convenient to define Ex,µ[f(x)f(µx)] as the stability Stabρ(f) of a function f .

Definition 12.1.1 (Noise Stability). For a (noise) parameter ρ ∈ (−1, 1), the stability of
a function f : {±1}m → {±1} denoted by Stabρ(f) is defined as

Stabρ(f) = Ex,µ[f(x)f(µx)]

where x is picked uniformly at random from {±1}m and µ ∈ {0, 1}m such that each µi is
−1 with probability (1− ρ)/2 and 1 otherwise.

It can be easily shown that

Stabρ =
∑
S

f̂2(S)ρ|S|
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where f̂(S) are the Fourier coefficients of f . Thus,

Pr[6=ρ-test accepts f ] =
1

2
− 1

2
Stabρ(f).

It is easy to see that dictators have stability ρ. Furthermore, for any linear functions χS ,
stability goes to 0 as |S| becomes large, which means that dictators pass the 6=ρ-test with
probability (1− ρ)/2 as noted above and χS with probability (1− ρ|S|)/2 which goes to 1/2
as |S| becomes large (i.e., they essentially behave like random functions with respect to this
test). Thus, at the very least, the test distinguishes dictators from other linear functions
which are functions of a large number of variables.

Another function to keep in mind is the majority function (i.e, majoritym(x1, . . . , xm) =
sign(

∑
xi)) which passes the test with probability approaching cos−1(ρ)/π as m→∞. Let

us see how various other functions behave with respect to this test1.

Remark 12.1.2. • Dictators and their negations pass the test with probability (1−ρ)/2.

• The constant functions passes the test with probability 0.

• The majority function passes the test with probability approaching cos−1 ρ
π as m→∞..

• Functions of the form f(x) = sign(
∑m

i=1 aixi) pass the test with probability ≈ cos−1 ρ
π ,

for most choices of ai’s.

• The majority function on a small subset of bits, say maj3(x) = maj(x1, x2, x3) passes
the test with probability p = 1

2 + 3
8ρ−

1
8ρ

3 which is closer to (1−ρ)/2. So these numbers

are in the order cos−1 ρ
π < p < (1− ρ)/2.

• The behaviour of the function f(x) = sign(Ax1 + x2 · · ·xn) varies according to pa-
rameter A. For A = 1, it is just the majority, but as A increases, it becomes more
dependent on x1. So the probability of f passing the test also increases, and above a
critical regime of A = Θ(

√
n), the probability is close to the one for dictators. Below

this regime, it is still around cos−1 ρ
π .

All the above seem to suggest that there are functions like majority which also pass the
test with probability significantly more than 1/2. But can there be worse examples? In fact
the above seem to suggest, that only functions in which some variable is considerably more
“influential” then the others (eg: dictator, maj3 have acceptance probability in the range
(cos−1(ρ)/π, (1− ρ)/2). Informally, we would like to show the following.

Theorem 12.1.3. (Informal) If 6=ρ-test passes with probability ≥ cos−1 ρ
π + ε then f is in

some way “similar” to a dictator (i.e., there is an influential variable).

Let us first define what we mean by an “influential” variable

1These examples are from Ryan O’Donnell’s lecture notes (lecture 18 in the course on PCPs by Venkatesan
Guruswami and Ryan O’Donnell at the University of Washington, Seattle [GO05]).
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Definition 12.1.4 (Influence). The influence of the ith variable on f : {±1}m → {±1}
denoted by Infi(f) is defined as

Infi(f) = Pr
x

[f(x) 6= f(xei)] = Ex
[

1− f(x)f(xei)

2

]
=
∑
S:i∈S

f̂(S)2

where ei ∈ {±1}m with −1 only in the ith position.

Let us see the influences of variables for some functions

Infi(xj) =

{
0 if i 6= j

1 if i = j

Infi(χS(x)) =

{
0 if i /∈ S
1 if i ∈ S

Infi(majoritym) =

(
m− 1

(m− 1)/2

)
1

2m−1
= Θ(1/

√
m)

Infi(paritym) = 1

Given the above behaviour of various functions with respect to the 6=ρ-test, Khot, Kindler,
Mossel and O’Donnell [KKMO07] conjectured the following theorem, which was later proved
by Mossel, O’Donnell and Oleszkiewicz [MOO05]

Theorem 12.1.5 (“Majority is the Stablest”(MIS) [MOO05, KKMO07]). For −1 < ρ < 0
and ε > 0 there exists τ > 0, such that if f : {±}m → {±1} has Infi(f) < τ, ∀i ∈ [m], then

Pr[f passes 6=ρ-test ] <
cos−1 ρ

π
+ ε.

The above theorem states that if f passes the test with probability more that cos−1 ρ
π + ε

then there exists i ∈ [m] such that the ith variable has high influence (Infi(f) ≥ τ). It is in
this sense that we said in that f is similar to a dictator function.

To prove hardness of MAXCUT, we will need a strengthening of the above “Majority
is the Stablest” theorem that applies to more general f : {±1}m → [−1, 1]. These are
functions which can be viewed as randomized functions (i.e., given f : {±1}m → [−1, 1],
it defines a function f ′(x) that is 1 with probability (1 + f(x))/2 and −1 with probability
(1− f(x))/2.)

Furthermore, we will need to work with low-degree influence instead of influence (i.e.,
sum of only the low order Fourier coefficients). For 1 ≤ d ≤ m¡ define the d-degree influence
as follows:

Inf≤di (f) =
∑

S:i∈S,|S|≤d

f̂(S)2.

The following genalization of the MIS theorem can be proven from the above more standard
version.

Theorem 12.1.6 (Generalized MIS Theorem). For any −1 < ρ < 0 and ε > 0, there exists
τ > 0 and d <∞ such that if f : {±1}m → [−1, 1] has Inf≤di (f) < τ ∀i ∈ [m], then

1

2
− 1

2

∑
S

ρ|S|f̂2(S) <
cos−1 ρ

π
+ ε.
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12.2 Unique Games

In the previous lectures, we proved that for any δ, it is NP-Hard to distuinguish between
instances of Label-Cover for which all the constrants are satisfied and only δ fraction are
satisfied. This was then used to show that MAX3LIN2 is NP-hard to approximate beyond a
factor of 1/2 + ε for any ε > 0. For the case of MAXCUT, this can be used to show that it
is NP-hard to approximate to factors better than 16/17 + ε for all ε > 0. It was found that
assuming a stronger version of the above result called the Unique Games Conjecture, tighter
inapproximability of many problems could be proved. In particular one could prove that
the Goemans-Williamson algorithm for MAXCUT is optimal. For stating this conjecture
we will define a restriction of the Label-Cover problem where the labels for each side of
the bipartite graph are from the same set and the constraints are permutations.

Definition 12.2.1 (UniqueLC(m)). An instance of the UniqueLC(m) problem is of the
form

I = (G = (U, V,E),Π = {π(u,v) : [m]→ [m] for (u, v) ∈ E})

where G is a bipartite graph with n vertices on each side, [m] is a set of labels and πe’s
are permutations on the set [m] which are to be viewed as constraints on the labellings
of vertices of G. The objective is to find a labelling σ : U ∪ V → [m] that satisfies (ie.
π(u,v)(σ(u)) = σ(v)) the maximum number of constraints ie. πe’s.

Given an instance of UniqueLC(m), one can check if it has a labelling that satisfies
all the constraints in polynomial time. The algorithm is as follows: For each connected
component in G, pick a vertex and try all possible labels to the vertex and for each, try to
label all other connected vertices satisfying the constraints. But this doesnt say anything
about the following problem.

12.2.1 Unique Games Conjecture

Definition 12.2.2 (gap1−δ,δ-UniqueLC(m)). gap1−δ,δ-UniqueLC(m) is a promise prob-
lem with set of yes and no instances given by

YES = {I : ∃ labelling σ such that it satisfies ≥ 1− δ fraction of π′es}

NO = {I : ∀ labellings σ, only ≤ δ fraction of constraints are satisfied}

Khot showed that if the above problem is hard then it implies the hardness of several
other problems. So, it is natural to consider the following conjecture.

Theorem 12.2.3 (Unique Games Conjecture [Kho02]). For any δ > 0, there exists a
sufficiently large m such that gap1−δ,δ-UniqueLC(m) is not in P .

We will say that a problem Γ is UG-hard if for some δ and all m there exists a polynomial
time reduction from gap1−δ,δ-UniqueLC(m) to the problem Γ. Note that if a problem Γ
is UG-hard, then Γ /∈ P assuming the UGC.
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Remark 12.2.4. • At present, there is no compelling reason to believe or disbelieve
the UGC conjecture. On the other hand, the UGC implies the tight inapproximability
results for several problems. On the algorithmic front, there have been several efforts
to refute the UGC including a recent subexponential algorithm due to Arora, Barak
and Steurer [ABS10]. We will discuss some of these algorithms in the next lecture.

• Assuming UGC, one can prove that is hard to distinguish between instances of MAX2LIN(q)
which are at least 1− δ-satisfiable and those that are at most 1/qδ/2+Ω(δ2)-satisfiable.
MAX2LIN(q) refers to the problem of finding the assignment that satisfies the most
number of linear equations (mod q) where each equation is over two variables. Ob-
serve that MAX2LIN(q) is itself a specific type of UG, where the constraints are linear
constraints of the ax+ by = c (mod q).

• Refuting/proving UGC is a major open problem and the best known polynomial time al-
gorithm for approximating UniqueLC are due to Charikar, Makarychev and Makarychev [CMM06].
They show that there is an efficient algorithm A such that ∀δ, given a UniqueLC in-
stance I which satisfies 1 − δ of the constraints, A outputs a labelling that satisfies
atleast 1/mδ/2+O(δ2) of the constraints. Any improvement on this result will disprove
UGC as can be noted from the previous remark.

12.3 UG-hardness of MAXCUT

In this section we will prove the following theorem which clearly gives the optimality of the
Goemans-Williamson algorithm under the unique games conjecture.

Theorem 12.3.1 (UG-hardness of MAXCUT [KKMO07]). For all ρ ∈ (−1, 0), ε ∈ (0, 1),

gap 1−ρ
2
−ε, cos−1 ρ

π
+ε

-MAXCUT is UG-hard.

Setting ρ = −06934.., we get that Goemans-Williamson is the best approximation al-
gorithm for MAXCUT assuming UGC. We will first see a different way of looking at the
UG-Hardness of gapc,s-MAXCUT.

Claim 12.3.2. gapc,s-MAXCUT is UG-Hard iff there exist δ and for all m there is a 2
query PCP over {0, 1} for gap1−δ,δ-UniqueLC(m) with a 6= predicate with completeness c
and soundness s.

Proof. (⇒) : First reduce the instance I of gap1−δ,δ-UniqueLC to an instance G = (V,E)
of MAXCUT. The binary PCP is a string indexed by elements of V , obtained from the
max cut of G by setting the entries of all vertices on one side of the cut to 1 and −1 for the
other side. The verifier randomly picks an edge, queries the value of the ends and accepts
iff the values are not equal.
(⇐) : Given a PCP π of the said form, one can construct a graph G(V,E) and weights W
as follows. V is [|π|], ie the set of locations in the proof. An edge (u, v) is give a weight
equal to the probability that the verifier generates (u, v) as query locations.
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Thus, to prove Theorem 12.3.1 it suffices to construct a PCP of the said form with the
required completeness and soundness from an instance of gap1−δ,δ-UniqueLC.

Given any x ∈ {±1}m and π : [m] → [m], let x ◦ π ∈ {±1}m denote the string
(xπ(1), xπ(2), · · · , xπ(m)) (i.e., (x ◦ π)i = xπ(i)).

First Attempt: Given an instance of gap,-UniqueLC, I = (G(U, V,E), {πe}), the PCP
Verifier expects as proofs fu : {±1}m → {±1} for all u ∈ U ∪ V , which in the right proof is
supposed to be the long codes of the label of each vertex in U ∪ V . The PCP verifier then
checks the long codes as follows.

1. Pick an edge (u, v) at random from E.

2. Pick x uniformly at random from {±1}m.

3. Set y ← µx where µ ∈ {±1}m such that µi is −1 with probability (1 − ρ)/2 and 1
otherwise.

4. Accept iff fu(x) 6= fv(y ◦ π(v,u))

Clearly, a proof constructed honestly, when the gap,-UniqueLC is (1−δ)-satisfiable passes
the PCP test with probability roughly (1 − ρ)/2. On the other hand, consider the proof
fu(x) = 1,∀u ∈ U and fv(x) = −1, ∀v ∈ V . Clearly, this proof passes the PCP with
probability 1. In fact, we notice that any PCP which makes one query each on either
side of the Label-Cover problem is doomed to fail for precisely the above reason. We
will instead work with a different PCP verifier, which makes queries into only one side
of the Label-Cover problem. In other words, this new PCP verifier expects as proof,
fv : {±1}m → {±1} only for all v ∈ V , which in the good case is supposed to be the long
code of the labels of v in V .

MAXCUT-PCP Verifier

Input: UniqueLC(m) instance (G,Π).

Proof: fv : {±1}m → {±1},∀v ∈ V

1. Pick u at random from U with probability proportional to the degree of u.

2. Pick v, v
′

at random from the neigbours of u. Let π(v,u), π(v′,u) be the inverses of
the corresponding constraints.

3. Pick x uniformly at random from {±1}m.

4. Set y ← µx where µ ∈ {±1}m such that µi is −1 with probability (1− ρ)/2 and
1 otherwise.

5. Accept iff fv(x ◦ π(v,u)) 6= fv′ (y ◦ π(v′,u))
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Completeness: Suppose the instance of Label-Cover that we started of with had a
labelling σ satisfying (1− δ) fraction of the constraints. Now the probability that σ satisfy
both (u, v) and (u, v

′
) is ≥ 1− 2δ. Suppose this is the case then the test accepts when

fv(x◦π(v,u)) 6= fv′ (y◦π(v′,u)) ⇐⇒ (x◦π(v,u))σ(v) 6= (y◦π(v′,u))σ(v′ ) ⇐⇒ xπ(v,u)(σ(v)) 6= (µx)π(v′,u)(σ(v′ ))

Since π(v,u)(σ(v)) = σ(u) = π(v′,u)(σ(v
′
)), this happen when µσ(u) = −1. Hence the com-

pleteness is

(1− 2δ)(1− ρ)/2 ≥ 1− ρ
2
− ε

since ε > 2δ.

Soundness:

Claim 12.3.3. Given ρ, ε, let τ and d be as in Generalized MIS Theorem 12.1.6 for pa-
rameters ε/2 and ρ. Let δ = ετ2/8d. If

Pr[MAXCUT-PCP accepts] ≥ cos−1 ρ

π
+ ε

then there exists a labelling σ that satisfies more that δ fraction of the constraints.

Proof. Suppose

Pr[MAXCUT-PCP accepts] = Eu,v,v′ ,x,µ

[
1− fv(x ◦ π(v,u))fv′ (xµ ◦ π(v′,u))

2

]
≥ cos−1 ρ

π
+ ε

By an averaging argument there exists at least an ε/2 fraction of u’s for which

Ev,v′Ex,µ
[

1− fv(x ◦ π(v,u))fv′ (xµ ◦ π(v′,u))

2

]
≥ cos−1 ρ

π
+ ε/2

Lets call these the good u’s. Let gu(x) = Ev[fv(x ◦ π(v,u))], then we rewrite the above as

Ex,µ
[

1− Ev[fv(x ◦ π(v,u))]Ev′ [fv′ (xµ ◦ π(v′,u))]

2

]
= Ex,µ

[
1− gu(x)gu(xµ)

2

]
≥ cos−1 ρ

π
+ ε/2

Then from the Generalized MIS Theorem 12.1.6, we know that gu must have atleast one
variable ju with large d degree influence. In other words, for each of the good u’s there
exists ju ∈ [m] such that

Inf≤dju (gu) ≥ τ

So lets assign the label of u, σ(u) = ju. Now we need to label the neighbours v of u. For
this we relate the Fourier coefficients of gu and fv.

gu(x) = Ev[fv(x ◦ π(v,u))] = Ev
[∑

f̂v(S)χS(x ◦ π(v,u))
]

= Ev
[∑

f̂v(S)χπ(v,u)(S)(x)
]

=
∑

Ev
[
f̂v(π

−1
(v,u)(T ))

]
χT (x)
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So ĝu(T ) = Ev
[
f̂v(π

−1
(v,u)(T ))

]
. Also

τ ≤ Inf≤dju (gu) =
∑

S:ju∈S and |S|≤d

ĝu
2(S)

=
∑

S:ju∈S and |S|≤d

(
Ev[f̂v(π−1

(v,u)(S))]
)2

≤
∑

S:ju∈S and |S|≤d

Ev
[
f̂v

2
(π−1

(v,u)(S))
]

( by Cauchy Schwarz)

= Ev

 ∑
S:ju∈S and |S|≤d

f̂v
2
(π−1

(v,u)(S))


= Ev

[
Inf≤d

π−1
(v,u)

(ju)
(fv)

]
Thus again by an averaging argument there is a τ/2 fraction of u’s neighbours v such that
the set Sv = {j : Inf≤d

π−1
(v,u)

(ju)
≥ τ/2} is non empty. So we will label v, with a random

element of Sv. Hence the fraction of edges that are satisfied by the labelling is

Pr
e∈E

[(u, v) is satisfied ] ≥ ε

2

τ

2

1

|Sv|
.

The above expression is accounted as follows: with probability at least ε/2 u is good, with
probability τ/2, v is a good neighbour of u and with probability 1/|Sv|, the label π−1(ju)
is chosen for v. Now we will show that |Su| ≤ 2d/τ .

m∑
i=1

Inf≤di (fv) =
∑
|S|≤d

|S|f̂v(S)2 ≤ d
∑
S

f̂v(S)2 = d

So |Sv|τ/2 ≤ d and

Pr
e∈E

[(u, v) is satisfied ] ≥ ε

2

τ

2

1

|Sv|
≥ δ [since δ = ετ2/8d]

This completes the proof of Theorem 12.3.1.
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