Limits of Approximation Algorithms 24 Apr, 2010

Problem Set 2

e Due Date: 13 May (Thurs), 2010

e It is recommended that you try to solve all the exercises and problems, but you need
to submit the writeup for only 5 of the 8 problems (note the length of the problem
statement is not reflective of the difficulty of the problem!).

e Collaboration is encouraged, but all writeups must be done individually.
e Indicate names of all collaborators.

e Refering sources other than the lecture notes is discouraged, since for some of the
problems a Google search will reveal the solution. But if you do use an outside source
(text books, lecture notes, any material available online), do mention the same in your
writeup.

Notation:
e [Fis a field of size ¢
e S is the set of affine subspaces of dimension & in F™.

e P, 4 is the set of m-variate degree d polynomials

EXERCISES

1. [Schwartz-Zippel]
If p: F™ — F is a non-zero m-variate polynomial of total degree at most d, show that
d
P =0] < —.
P lp(z) =0] < ]
2. [Orthogonality via Schwartz-Zippel]

In class, we showed that E cpm|[xa(z)] = 0 for o # (0,0,...,0) where x,’s are the
characters defined as xq(x1,...,Zm) = (—1)2%%. Give an alternate proof using
Schwartz-Zippel to the polynomial x,.




PROBLEMS

1. [linearity test of 3 functions]

Consider the following modification of the BLR-linearity test towards testing linearity
of 3 functions f,g,h: {0,1}" — {1, —1} simultaneously.

BLR-3-Test/9" : “ 1. Choose y, z €g {0,1}" independently

2. Query f(y),9(z), and h(y + z)
3. Accept if f(y)g(2)h(y + z) = 1. "

Clearly, if the three functions f, g, h are the same linear function, then the above test
accepts with probability 1. Suppose one of the three functions f, g, h (say f) and its
negation (i.e., —f) is o-far from linear (this means max, |fo| < 1 — 24), show that

Pr[BLR-3-Test/ 9" rejects | > 4.
Y,z
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2. [recycling queries in linearity test]

In lecture, we analyzed the soundness of the BLR-Test to show that if f is (1/2—¢)-far
from linear, then the test accepts with probability at most 1/2 + e. If we repeat this
test k times, we obtain a linearity test which makes 3k queries and has the following
property: if f is (1/2 — ¢)-far from linear, then the test accepts with probability at
most (1/2 + €)¥ = 1/2% + §. Thus every additional 3 queries improves the soundness
by a factor of 1/2. In this problem, we show that this can be considerably improved.

Assume that both f and — f are (1—&)/2-far from linear (i.e., maxq |fo| < ). Consider
the following linearity test (parameterized by k).

Test{ : “ 1. Choose 21, 22,...,2r €g {0,1}"
2. For each distinct pair (i,7) € {1,...,k}
Check if f(z)f(2)f(zi + z;) = L.
3. Accept if all the tests pass.

Observe that this test makes at most k& + (g) queries. We will show below that

k
the soundness of the test is roughly 2_(2), thus showing that every additional query
improves the soundness by a factor of 1/2 (almost).

Assume that both f and —f are (1 — ¢€)/2-far from linear.



(a) Show that the acceptance probability of the above test is given by

Priacc] = En, .. H <1 + f(zi) f(2) f(zi + zj))

2
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(b) Consider any term in the above summation corresponding to a non-empty S
(e, E; . 2 [H(i,j)es f(zz)f(z])f(zl+z])}) Suppose (1,2) € S. Show that

Eei o [[iuges (20 £(z) (i + )] is upper bounded by Es, -, [f 21+ 22)a(21)h ()]
for some functions g, h : {0,1}"™ — {0, 1}.
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(c) Use the result of Problem 1 to conclude that the expression in the above (for
non-empty sums) is at most ¢ (i.e., E;, ., [H(i,j)eS f(z)f(z)f(zi+25)| < e
for non-empty 5).

(d) Conclude that Pr[acc] is at most 9=(3) 1.

3. [Affine subspaces sample well]

In the proof of the low-degree test, we assumed that affine subspaces are good sam-
plers. In this problem, we will formally prove this statement.

Let A C F™ of density p (i.e., |A| = pg™).
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4. [polynomial decoding: short list of polynomials]

Let A : F™ — F be any function (not necessarily a low degree polynomial). Let
P1,D2, .., pt - F™ — F be the list of all degree d polynomials such that Pr,[A(z) =
pi(z)] > 6. In other words, pi,...,p; is the list of all polynomials that have each
agreement at least § with the function A. Assume § > 2\/%. Prove that ¢t <
2/5. Hence, there are not too many low-degree polynomials that have considerable
agreement with two polynomials.
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5. [Interpolation from cliques of consistency graph]

In lecture, we defined the notion of a consistency graph G = (V, E), given a subspace
oracle A : S,f“ — P q where V. = §" and E = {(s1,52)|Vx € 51N 52, A(51)(x) =
A(s2)(z)}. Suppose there exists a clique W C V of size (%%) |V'|, prove that there
exists a polynomial Q) : F'™ — F of degree 2d such that for eah w € W, we have
Qlw = A(w).
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. [Degree reduction)]
In lecture, we showed that if the plane-point low-degree test passes with with non-
significant probability =, in other words

Pr  [A(s)(z) = A(z)] = 7,

seES xEs -
then there exists a polynomial @) : F™ — F of degree at most 2d such that

Pr[Q(z) = A(x)] =2 7% — ¢,

for some ¢ = m®(d/q)?. In this problem, we will show that the degree of the polyno-
mial () can be reduced from 2d to d.

Suppose there exists a polynomial ) : F™ — F of degree dq for some 0 < 6 < 1 and
furthermore,
1
P =A >0+ -,
B (@l = AG)] = 0+
show that the degree of @) is in fact, at most d.
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. [low degree testing to list of polynomials]

In lecture, we showed that if there is a list of low-degree polynomials that agrees with
the space oracle then low-degree test theorem is true. In this problem, we will show
the converse of this statement.

Suppose there exists a function f : (0,1) — (0,1) such that the following is true.

“[Low Degree Test Theorem| For every function A : F* — F and A : S* — P, 4 that
satisfies

PriA(s)(x) = A(z)] = 7,

S, T -



we have

Pr[A(z) = Q(@)] > f(7)
for some polynomial @ of degree at most d (end of Low Degree Test Theorem)”

(recall that we proved the above in lecture for the function f(y) =2 —¢)

Let g = y/d/q and § € (gg,1). Set &' = f(6 — eg) — €9 > 2¢¢. Prove that for any
function B : F™ — T, there exists a list of at most ¢ < 2/’ polynomials Q1,...,Q; :
F™ — F of degree at most d such that

Pr  [B(s)(z) # B(x) A (3i,Qils = B(s))] > 1 — 4.

sES" €S

You may assume the result of Problem 4. We will prove the above statement as
follows. Suppose for contradiction that the statement if false.

Let Q1,Qo, ..., Q; be the list of polynomials that have at least ¢’ agreement with B.
By Problem 4, ¢t < 2/¢'. Suppose the statement was false. Consider the following 3
events for a random s € S} and x € s.

(a) Show that Pr[C' A S] > 4. S denotes the event “not S”
(b) Argue using Schwartz-Zippel Lemma, Pr[C A P| 5] < &.
) Conclude that Pr[C A P] > § — &.

)

Construct a new oracle B’ : F™ — T as follows: let ' be an arbitrary polynomial
of degree exactly d+ 1. Set B(z) to be Q'(x) on all points x that satisfy P and
B(z) otherwise. Let the space oracle of B’ be the same as that of B. Show that

Pr [B'(s)(z) = B'(z)] > 6 — 0.

(e) Conclude from the low-degree test theorem that there exists a polynomial @ of
degree at most d such that Pr[Q’'(z) = Q(z)] > f(d — £o). Argue that Q and Q'
are distinct polynomials and hence,

Pi{B(s) = Qa) A B'(2) # Blo)] < PrQ/(0) = Q)] < T <o
(f) Argue that Pr[B(z) = Q(z) = B'(z)] > f(6 —e9) —e0 =¢'.
(g) Conclude from above that there exists a i € [t] such that @ = Q; (i.e., Q and Q;
are identical polynomials)
(h) Conclude that ¢’ < Pr[B(z) = Qi(z) = B'(z)] < Pr[Q'(z) = Q(x)] < &¢, which

is a contradiction.



8. [Fourier interpretations]

Let f:{0,1}" — R and write the Fourier expansion of f, f = ng[n} f(S)XS where
xs :{0,1}" — {—1,1} is defined as

Xs(x) = (~1)%ies ™,

and f : 2l 5 R is defined as follows:

£(8) = (f,xs) = E [f(x)(—l)ziesxi .

All probabilities and expectations in this question are with respect to the uniform
product probability distribution on {0,1}".

(a)

Given a set S C [n], define f<%:{0,1}" — R by

=5 =" J(T)xr.

T:TCS

Note that f<%(z) actually only depends on the bits of z in S; call these bits zg.
Show that f=° (zg) is equal to the expected value of f conditioned on the bits
rg (ie., fS9(xg) = Eycto,132[f(y)|lys = ws] (The expectation is thus over the
bits of & not in S.

Suppose f’s range is {—1,1}; i.e., f is a Boolean-valued function. We define the
influence of the ith coordinate on f to be Infi(f) = Pry[f(z) # f(z®)], where
2@ denotes the string z with the ith bit flipped. This measures how sensitive f
is to flipping the ith coordinate. Show that

Infi(f) = Y f(5)*

S:eS

Again, suppose f is a Boolean-valued function. f is said to be monotone if
f(x) < f(y) whenever x > y. (By x > y we mean x; > y; for all i.) For example,
the AND function which is given AND(zx,y) = 1 — 2xy is monotone. Similarly,
OR, and Majority are also monotone functions; Parity is not monotone.

Show that if f is monotone then Inf;(f) = f({i}) for each i € [n].

Once more, suppose f is Boolean-valued. Suppose we pick z € {0,1}" at random
and then form a string y € {0,1}" as follows: for each ¢ = 1...n independently,
we set y; = x; with probability p and set y; to be a uniformly random bit with
probability 1 — p. The noise stability of f at p is defined to be

Stab,(f) = 2 Pr{f(x) = f(y)] - L,

a number in the range [—1,1]. This measures in some way how stable f is when
you flip about 3(1 — p) input bits. Show that

Staby(f) = Y F(5)%l%.
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