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6(a). Applications to auctions and linear programming

Lecturer: Prahladh Harsha Scribe: Nikhil Balaji

We have seen some basic protocols and lower bounds in communication complexity, and
some of their applications to VLSI Design, time-space tradeoffs in the Turing machine model,
streaming algorithms, and depth lower bounds for monotone circuits. We will continue in
the same spirit and see two more applications of communication complexity. The agenda
for today’s lecture is as follows: We will study application of communication complexity to:

• combinatorial auctions [BN07], and

• expressing combinatorial optimization problems as linear programs [Yan91].

6(a).1 Combinatorial Auctions

Consider the following scenario: There are n bidders for an auction of m items. The auction
is conducted by a single auctioneer who is in possession of the m items. Each bidder has a
predetermined (private) valuation of all the m items. The auction is carried out with the
following aims:

• The auctioneer wants to maximize his total revenue.

• The bidders want to maximize their total value, which is governed by a valuation
function private to the bidder, and neither the auctioneer, nor the other bidders
possess any knowledge of a particular bidder’s valuation of the items.

• The whole process is expected to happen in a setting of social welfare, i.e., A bidder
who wants an item the most hopefully, should be able to get it.

Let {Bi}ni=1 denote each bidder. The auction model that we consider here is that, rather
than bidding for individual items, the bidders are interested in “bundles” of items. In order
to reflect this, we will define the private valuation functions as assigning weights to all 2m

possible subsets of m items, rather than indivdually to each item. We have, Vi : 2[m] → R+,
∀i ∈ [n] satisfying the following properties:

1. Monotonicity: ∀S ⊆ T , V(S) ≤ V(T ).

2. Free-Disposal: V(∅) = 0.

Observe that we do not assume that the valuation V satisfies sub-additivity, i.e., V(S∪T ) 6=
V(S) + V(T ).
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6(a).1.1 The allocation problem

We are interested in the problem of allocating m items to the n bidders1

Input: The {Vi}i∈[n] valuation function of all the n bidders.
Output: A partition (S1, . . . , Sn) of them items and a corresponding price vector (P1, . . . , Pn)
so as to maximize the social welfare, i.e,

∑
i∈[n] Vi(Si).

The above objective function maximized the social welfare. However, different parties
may want to maximize different quantities, based on their interests. For instance,

1. Each bidder would want to maximize her utility, ie., u(Si) = Vi(Si) − Pi for the i-th
bidder.

2. The auctioneer would want to maximize her revenue, i.e.,
∑

i∈[n] Pi.

3. The society would like to maximize social welfare, i.e., maximize
∑

i∈[n] Vi(Si) or
maximize the value of the least happy person, i.e., maximize mini∈[n] Vi(Si).

In this lecture, we will be dealing with allocations that aim to maximize social welfare.2

Remark 6(a).1. Observe that even writing down the valuation functions Vi’s takes expo-
nential time (and space) in the number of items. We will assume that the bidders know their
valuations implicitly, i.e., there are small circuits that compute the valuations. In general,
we will be interested in algorithms that run in time polynomial in m, the number of items
and n, the number of bidders. In other words, the algorithm does not have sufficient time
to (explicitly) read the entire valuation.

6(a).1.2 The single-minded bidder

As noted in Remark 6(a).1, the allocation problem does not get to see the valuation functions
explicitly, but only implicitly. In this section, we will consider a special case, wherein the
valuation function can be expressed very succinctly, namely the single-mided bidder. A
valuation function is called single minded if for all bidders Bi, there exists a S∗i ⊆ [m] and
v∗ ∈ R such that, ∀S ⊆ [m],

Vi(S) =

{
v∗i , if S∗i ⊆ S
0, otherwise

The pair (S∗i , v
∗
i ) is called a single-minded bid of bidder Bi. So, in this case, the auc-

tioneer could either allocate to bidder Bi, the subset S = S∗i or not allocate anything at all,
i.e., S = ∅. The allocation problem in this case would be:

1Such auctions are of practical interest-for example, in spectrum auctions, where licenses are sold for the
use of a certain band of the electromagnetic spectrum in a certain geographic area. This could be modeled
as a combinatorial auction, where the mobile service providers are the bidders and the bandwidth allocation
being the item in auction.

2A mechanism is said to be incentive compatible if it is in the best interest of each bidder (provably) to
answer Vi(Si) truthfully.
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Input: {S∗i , v∗i }i∈[n]
Output: An allocation T ⊆ [n], such that ∀i, j ∈ T , we have S∗i ∩ S∗j = ∅ and

∑
i∈T v

∗
i is

maximized.

We show that even for this simple case, the allocation problem is NP-hard.

Theorem 6(a).2. The allocation problem for single-minded bidders maximizing social wel-
fare (Max-Social Welfare(MSW)) is NP-hard. Or more precisely, the decision problem of
whether the optimal allocation has a social welfare of atleast k is NP-complete.

Proof. Our allocation problem is an optimization problem where we have to maximize
social welfare. We will reduce from the Maximal Independent Set Problem (MIS) which is
the following: Given a graph G = (V,E) and k ∈ Z+, we want our algorithm to output
a set U ⊆ V and |U | ≥ k, such that ∀x, y ∈ U, (x, y) /∈ E(G). Given an instance of the
Independent Set Problem, we will build an allocation problem instance from it, such that,
V will be the bidders in the auction, and E will be the set of items to be auctioned. So, for
each i ∈ V, (S∗i , v∗i ) = ({e ∈ E : e is incident on i}, 1). Notice that if we have an algorithm
for the allocation problem which outputs the set T , we can directly use it to solve the
Maximal Independent Set Problem : T has the property that ∀i, j ∈ T , we have S∗i ∩S∗j = ∅
if and only if the set of vertices T is an independent set for the graph G, and the social
welfare obtained from this auction is exactly

∑
i∈T v

∗
i = k. Hence, the single-minded bidder

allocation problem is NP-hard.

Since the above reduction is from MIS which exhibits very high inapproximability, we
can further strengthen the conclusion of the above theorem.

Corollary 6(a).3. Even m
1
2
−ε-approximating MSW is NP-hard, even in the simple case

of the single-minded bidder allocation.3

6(a).1.3 The communication complexity perspective

Suppose the auctioneer and bidders had unlimited computational power, does this make
the allocation problem any simpler? The single-minded bidder case then becomes easy
to solve (for the objective of maximizing social welfare). But what about the allocation
problem for general valuation functions? Note, that the auctioneer can solve the allocation
problem by obtaining the valuation functions from all the bidders. However, this requires
the bidders to send exponentially long messages to the auctioneers. Is it feasible for the
auctioneer and bidders to arrive at a social-welfare maximizing allocation without exchang-
ing too many messages? We will show, using communication complexity, that this is not
possible. More precisely, even ignoring computational hardness of the problem (i.e., as-
suming the auctioneer and bidders have unlimited computational power), we will show any
protocol between the bidders and auctioneer that achieves maximum social welfare, requires
exponential communication between the various parties in the worst case.

As a first step towards simplifying the current scenario, we will eliminate the need for
an auctioneer (since anyway, the goal of the parties is to maximize social welfare), and treat

3This approximation, albeit poor, can be achieved by a polynomial time algorithm, which also turns out
to be incentive-compatible.
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the problem as one of communication between the bidders. Let’s further assume that there
are just two bidders (call them Alice and Bob) with a 0/1-valuation function.

Theorem 6(a).4. Any protocol (even randomized) between Alice and Bob (with 0/1-valuations)
that maximizes social welfare requires at least Ω(

(
m

m/2

)
)- bits of communication in the worst

case.

Proof. Since there are only two bidders (Alice and Bob), we can assume wlog. that the
allocation problem is equivalent to finding a set S ⊆ [m] such that VA(S) + VB(Sc) is
maximized (where Sc = [m] \ S). Recall that VA and VB are monotone functions and since
they are 0/1 valuations, we have that maxS⊆[m][VA(S) + VB(Sc)] ∈ {0, 1, 2}.

We will prove the theorem by reducing from the Disjointness of subsets of
[(

m
m/2

)]
(i.e,

DISJ( m
m/2)

). Let’s assume m to be even. Consider an instance of DISJ( m
m/2)

, where Alice and

Bob get as inputs X,Y ⊆
[(

m
m/2

)]
(or equivalently X,Y ∈ {0, 1}(

m
m/2)). We will view the

strings X and Y as assigning 0/1-values to each of the m/2-sized subsets of [m]. Alice and
Bob then construct valuations functions VA and VB as follows. For sets S of size m/2, we
let

VA(S) = 1 iff X(S) = 1

VB(S) = 1 iff Y (Sc) = 1

For sets S such that |S| < m/2, we have VA = VB = 0 and for sets S such that |S| > m/2,
we set VA(S) = VB(S) = 1. This ensures that both VA and VB are monotone.

Observe that maxS⊆[m][VA(S) + VB(Sc)] ∈ {1, 2} and furthermore if maxS⊆[m][VA(S) +
VB(Sc)], then both S and Sc and m/2-sized subsets.

VA(S) + VB(Sc) = 2 ⇔ X(S) = 1 and Y (S) = 1

⇔ X ∩ Y 6= ∅

Hence, maxS⊆[m][VA(S) + VB(Sc)] = 2 if and only if X and Y are not disjoint. We can
straightaway use the disjointness lower bound and conclude that atleast

(
m

m/2

)
bits have to

be communicated in order for the protocol to find the optimal allocation.

6(a).2 Expressing combinatorial optimization problems as Lin-
ear Programs

We will now see an application of communication complexity in combinatorial optimization
due to Yannakakis [Yan91]. In the mid-1980’s, there were several attempts to give polyno-
mial sized linear programming formulations for various NP -complete problems including,
the Hamiltonian cycle problem4. Yannakakis observed a common theme in these (failed)

4Since a linear program on polynomially many variables and polynomially many constraints is solvable in
polynomial time (using the ellisoid algorithm) and Hamiltonian cycle is NP-hard, these attempts if successful
would imply that P = NP! Check, http://www.win.tue.nl/~gwoegi/P-versus-NP.htm for more details.
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attempts and in the process of refuting them, identified a combinatorial parameter of the
underlying optimization problems and showed that the LP formulation could be polynomial
sized if and only if this parameter was small. He then used techniques from communication
complexity to show that this parameter is large typically for NP-complete problems. For
instance, one such result proved by Yannakakis [Yan91] is that expressing the Traveling
Salesperson Problem (TSP) by a symmetric linear program requires exponential size. We
will build towards this result in the rest of this lecture, and sketch the proof in the next
lecture.

6(a).2.1 Combinatorial Optimization Problems

A typical combinatorial optimization problem is of the form:

max cTx

subject to x ∈ S

where S is a set of feasible solutions, membership in which can be checked efficiently. For

example, S could be the set of all perfect matchings in a graph (i.e., x ∈ S ⊆ {0, 1}(
n
2) if x

is the characteristic vector of a perfect matching). Another example is the set of all possible
travelling salesperson tours. For most of these problems, max{cTx : x ∈ S} is equivalent
to max{cTx : x ∈ conv(S)}, where conv(S) is the convex hull of the points in S. In other
words, for most of these problems the maximum is unchanged whether one optimized over
the set S or the convex hull of S. Note that conv(S) is a polytope and cTx is a linear
function. Hence, we can apply LP solvers to solve such an optimization problem, provided
the LP is “small”5. As a concrete example, consider the TSP problem.

Input: A distance function d : [n] × [n] → R≥0 between the n vertices of a complete
graph Kn.

Output: A tour v0, v1, . . . , vn, such that, v0 = vn and each vertex in the set {v0, v1, . . . , vn}
appears exactly once.

Objective: Minimize
∑n−1

i=0 d(vi, vi+1), over all possible tours of the n vertex graph.

Let S ⊆ {0, 1}(
n
2) be the set of feasible tours in Kn, i.e, x ∈ S iff x is the characteristic

vector of a feasible tour, xi,j is 1 if the edge (i, j) is in the tour and 0 if the edge (i, j) is
not in the tour. The convex hull conv(S) is called the TSP polytope and it can be checked
that the TSP polytope has exponentially many facets (constraints). Observe, that solving
the TSP problem, i.e., finding min{

∑
(i,j)∈E d(i, j)xi,j : x ∈ S} is equivalent to finding

min{
∑

(i,j)∈E d(i, j)xi,j : x ∈ conv(S)}. The latter is a LP and would have been solvable in
polynomial time if the TSP polytope had only polynomially many constraints. Is it possible
that the TSP polytope has an alternate representation which has only polynomially many
variables and constraints?

5for the purpose of this lecture, we will limit ourselves to “small” LPs in the sense that they have only
polynomially many variables and constraints, in which case it is known that the LP is polynomial time
solvable. Polynomial time solvability is implied by more general conditions (eg., existance of a polynomial
time separation oracle for membership in the polytope), which we will not consider in this lecture.
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More generally, suppose we have a polytope P = {x ∈ Rn : Cx ≤ d} where the number
of constraints (i.e, number of rows of C) is exponential. One natural question to ask is
whether there is an alternate polytope P ′ of polynomial size that “expresses P”. We say
that a polytope P ′ = {(x, y) ∈ Rm+n : C ′x+D′y ≤ d′} expresses P iff

P = {x ∈ Rn : ∃y ∈ Rm such that (x, y) ∈ P ′}.

Clearly, if P ′ expresses P , then max{cTx : x ∈ P} = max{cTx : (x, y) ∈ P ′}. In other
words, to maximize cTx over P , one might as well maximize cTx over P ′. Now, if P ′ is
polynomial sized, then the latter problem is polynomial time solvable. Does this approach
work? (as in, do the additional variables added, bring down the number of constraints?)
We will see an example where it does help before we move ahead to the question of whether
it helps in the case of the TSP polytope.

The Parity Polytope

PP = conv{x ∈ {0, 1}n : x has an odd number of 1’s}.

It can be checked that the PP has exponential many facets (constraints), namely:∑
i∈S

xi −
∑
i∈Sc

xi = |S| − 1, ∀S ⊆ [n], |S| even,

0 ≤ xi ≤ 1

Howevwer, the following simple observation shows that there exists a polynomial sized
polytope PP ′ that expresses PP .

PP = conv

{ ⋃
k – odd

conv {x ∈ {0, 1}n : |x| = k}

}
,

where |x| denotes the number of 1’s in x. In other words, x ∈ PP iff x can be written as
x =

∑
k - odd αkyk where αk ∈ [0, 1] such that

∑
αk = 1 and yk ∈ Ck where Ck = conv{x ∈

{0, 1}n : |x| = k}. It can be checked that Ck = {x ∈ [0, 1]n :
∑
xi = k}. This helps us write

another polytope PP ’ that expresses PP , namely:∑
k odd

αk = 1

xi =
∑
k odd

zik, ∀i ∈ [n]∑
i∈[n]

zik = kαk, ∀ odd k

αi ≥ 0, ∀ odd k

In the formulation above, the vector zk/αk = (z1k/αk, z2k/αk, . . . , znk, αk) plays the role
of the vector yk in the intuition explained earlier.Hence, PP ′ (which has only polynomiall
many variables and constraints) expresses PP . Hence, increasing the number of variables
has helped us reduce the size of the polytope expressing PP .
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Does this technique work in general? Given a polytope P = {x : Cx ≤ d}, where size
of C is large, what is the minimum number of new variables we need to add such that the
polytope P ′ = {(x, y) : C ′x + D′y ≤ d′} expresses P , where C ′ and D′ are small in size?
To answer this, we first need a convenient representation of a polytope given by a linear
program.

Definition 6(a).5. Let P = {x ∈ Rn : Cx ≤ d} be a polytope. Wlog. assume that all the
constraints are linearly independent. Let M and N denote the number of facets (equivalently
the number of constraints) and the number of vertices respectively of the polytope P . We
will construct a M ×N non-negative matrix S, which we will call the Slack Matrix6, which
has a row for each constraint “〈cj , x〉 ≤ dj” and a column for each vertex ui, with entries:

Sij = dj − 〈cj , ui〉

In other words,

S =
(
d · 1 −C

)( 1 1 . . . 1
u1 u2 . . . uN

)
.

The (i, j)-th entry of the matrix holds the slack that vertex ui witnesses for the constraint
“〈cj , x〉 ≤ d”. A 0 entry in the matrix means the vertices is tight wrt. that constraint. Since
the cj ’s are linearly independent, for every constraint there will be atleast M vertices which
are tight. Since S can be written as F ′ · V ′ where F ′ is a (M × (n+ 1))-matrix and V ′ is a
((n+ 1)×N)-matrix, the rank of S is at most (n+ 1). However, observe that both F ′ and
V ′ have negative entries. Can we write S = F ·V where F and V are respectively (M ×m)
and (m×N) non-negative matrices. The smallest such m is called the positive rank of S,
denoted by m∗. More precisely,

m∗(S) = min {m : [S]M×N = [F ]M×m.[V ]m×N ,where F and V are non-negative matrices}

Yannakakis observed the following connection between m∗ and the minimum number of
variables and variables over all LP’s that express P .

Theorem 6(a).6. Let P be a polytope and m∗ be the positive rank of the it’s slack matrix.
The minimum number of variables plus constraints over all LP’s that express P is Θ(n+m∗).

We will see the proof of this theorem, and it’s connection to communication complexity
in the next lecture.
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