
Communication Complexity 16 Sept, 2011 (@ IMSc)

7. Distributional Communication Complexity

Lecturer: Prahladh Harsha Scribe: Pranabendu Misra

In today’s lecture, we will introduce distributional complexity and discrepancy, methods
used to bound randomized communication complexity. The main reference for today’s
lecture are §3.3–3.5 of Kushilevitz and Nisan’s book [KN97].

7.1 Public coins vs. private coins

In randomized communication complexity, public coin protocols are at least as efficient as
private coin protocols. This is because any private coin protocol can be simulated by a
public coin protocol. However, public coin protocol can have lower cost than private coin
ones, as seen from the equality function EQ. We have seen that

Rpub
1/3 (EQn) = Θ(1),

R1/3(EQn) = Θ(log n).

Thus, there is a gap of Ω(log n) between public coin protocols and private coin protocols.
The following theorem show that this is the largest possible gap between the two.

Theorem 7.1 (public vs. private). For any function f : {0, 1}n × {0, 1}n → {0, 1} and
ε, δ > 0,

Rε+δ(f) ≤ Rpub
ε (f) +O

(
log n+ log

(
1

δ

))
.

See [KN97, §3.3] for a proof of this statement.

7.2 Distributional communication complexity

In this section, we introduce a new communication cost called the distributional communi-
cation complexity, which will become useful while obtaining lower bounds on randomized
communication complexity.

Here we consider a probability distribution µ over the set of inputs X × Y. We are
interested in the best (least communication) deterministic protocol P that has an error
at most ε when the input is drawn randomly from the distribution µ. In other words,
the deterministic protocol P errs on at most ε fraction of the inputs, when the inputs are
weighted according to the distribution µ. I.e.,

Pr
(X,Y )∼µ

[P (X,Y ) 6= f(X,Y )] ≤ ε.

Definition 7.2 (distributional communication complexity). The distributional communi-
cation complexity of a function f : X ×Y → {0, 1} over the distribution µ and with error at
most ε, denoted by Dµ

ε (f), is the cost of the best deterministic protocol that gives the correct
answer on at least (1− ε) fraction of all the inputs, weighted by µ.
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Here, as before, the cost of a protocol is the worst case (over all inputs) number of bits
exchanged by the protocol.

Thus Dµ
ε (f) = minP∈P cost(P ) where P is the collection of protocols P satisfying

Pr
(X,Y )∼µ

[P (X,Y ) 6= f(X,Y )] ≤ ε

and for any protocol P , cost(P ) = max(x,y)∈X×Y communication on input (x, y).

Example: greater-than (GT) function

GT(x, y) =

{
1 if x ≥ y
0 otherwise

,

where x, y ∈ {0, 1}n are viewed as the binary representations of numbers in {0, . . . , 2n− 1}.
Let unif be the uniform distribution on the inputs. Consider the protocol where Alice send
only the the most significant bit of x, MSB(x), to Bob, and Bob accepts if MSB(x) ≥
MSB(y). This protocol gives the correct answer on at least 3

4 fraction of the inputs. Hence,

Dunif
1
4

(GT) = O(1).
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Figure 1: The GT function.

It is easy to check that the randomized communication complexity of a function Rpub
ε (f)

upper bounds the distributional complexity Dµ
ε (f) for every distribution µ. The following

theorem shows that the other direction is true as well. i.e. there exists a distribution
µ such that Dµ

ε (f) ≥ Rpub
ε (f). Thus, distributional complexity completely characterizes

randomized complexity.

Theorem 7.3. Rpub
ε (f) = maxµ Dµ

ε (f).

Proof. It is easy to see that for all distributions µ, Rpub
ε (f) ≥ Dµ

ε (f). Let µ be any distri-
bution on the inputs X ×Y. Let P be a randomized protocol for f , with cost Rpub

ε (f), and
let R denote the random string used by the protocol P . Then for all pairs of strings (x, y),
we have,

Pr
R

[P (x, y;R) = f(x, y)] ≥ 1− ε.

In particular, we have

Pr
R,(X,Y )∼µ

[P (X,Y ;R) = f(X,Y )] ≥ 1− ε.
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Therefore, there exists a fixed string r such that

Pr
(X,Y )∼µ

[P (X,Y ; r) = f(X,Y )] ≥ 1− ε.

So we run the protocol P while fixing the above r, to get a deterministic protocol which is
correct in at least (1 − ε) fraction of the cases, relative to distribution µ. Hence, Dµ

ε (f) ≤
Rpub
ε (f).

Now, for the other direction. Suppose maxµ{Dµ
ε (f)} ≤ c, we will show that Rpub

ε (f) ≤ c.
Consider the following 2 player zero-sum game. Player 1 chooses a deterministic protocol
P for f of cost c (and whatever error), and Player 2 chooses an input (x, y) ∈ X ×Y. Both
players make their choices in parallel, so that neither is aware of the other’s choice.

The payoff for Player 1 is

{
1 if P (x, y) = f(x, y)

0 otherwise
.

Now, the fact that Dµ
ε (f) ≤ c for every µ implies that for every randomized strategy of

Player 2 (i.e., for every probability distribution µ over X ×Y), Player 1 can obtain expected
payoff (1− ε) using the protocol P of cost Dµ

ε ≤ c. By the min-max theorem for zero-sum
games (see Appendix A for details), Player 1 has a randomized strategy, with an expected
payoff of (1−ε) for every choice of inputs of Player 2. Now note that a randomized strategy
for Player 1 is a distribution over cost c deterministic protocols, ie., a public coins protocol
of cost at most c. Thus, there exists a public coin protocol of cost at most c that is correct
on every input with probability at least 1− ε. Hence, Rpub

ε (f) ≤ maxµ Dµ
ε (f).

The above theorem can be used to prove lower bounds on randomized communication
complexity. To do so, we need to come up with a suitable probability distribution µ and
then prove lower bounds on Dµ

ε (f).

7.3 Discrepancy

Recall the rectangle method for showing lower bounds for deterministic communication
complexity D(f). By showing that there are no large monochromatic rectangles in Mf , we
showed that the number of rectangles in a monochromatic rectangle cover of Mf must be
large. Hence, the deterministic communication complexity must be large.

We can do something similar in the case of distributional communication complexity.
Let µ be a distribution on the inputs X ×Y. First consider rectangles S×T , where S ⊆ X ,
T ⊆ Y. We call a rectangle unbalanced, if it is mostly 1s or 0s (with respect to µ). To show
that the communication complexity must be large, it suffices to show that any unbalanced
rectangle must be small, or equivalently, any large rectangle must be balanced. This implies
that most rectangles must be small, since otherwise the protocol will make an error on a
large fraction of inputs. Most rectangles being small implies that there is a large number of
rectangles and hence the distributional complexity is large. This notion of “large unbalanced
rectangles” is captured in the following definition.

Definition 7.4 (discrepancy). Let µ be a distribution on X ×Y. Then the discrepancy of f
on a rectangle R = S×T under distribution µ, denoted by discµ(f ;R), is defined as follows:

discµ(f ;R) =

∣∣∣∣Pr
µ

[(X,Y ) ∈ R and f(X,Y ) = 1]− Pr
µ

[(X,Y ) ∈ R and f(X,Y ) = 0]

∣∣∣∣ .
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The discrepancy of f under µ is defined as

discµ(f) = max
R

discµ(f ;R).

The following theorem shows how discrepancy can be used to lower bound distributional
complexity.

Theorem 7.5. For all distributions µ and ∀ε ∈ (0, 12),

Dµ
1
2
−ε(f) ≥ log2

(
2ε

discµ(f)

)
.

Proof. Let P be a deterministic protocol for f of cost c = Dµ
1/2−ε(f) that is correct on at

least (12 + ε)-fraction of the inputs, weighted according to µ. Let L be the set of leaves of
the protocol tree of P , and for l ∈ L, let Rl be the corresponding rectangle. We can assume
that for each leaf l, the protocol P labels the leaf Rl with 0 if the weight of 0s in Rl exceeds
that of 1s (ie. µ(Rl ∩ f−1(0)) ≥ µ(Rl ∩ f−1(1))), and with 1 otherwise. (Otherwise, flipping
the label only reduces the error.)

2ε ≤ Pr
µ

[P (X,Y ) = f(X,Y )]− Pr
µ

[P (X,Y ) 6= f(X,Y )]

=
∑
l∈L

(
Pr
µ

[P (X,Y ) = f(X,Y ) and (X,Y ) ∈ Rl]− Pr
µ

[P (X,Y ) 6= f(X,Y ) and (X,Y ) ∈ Rl]
)

≤
∑
l∈L

∣∣∣∣Pr
µ

[P (X,Y ) = 1 and (X,Y ) ∈ Rl]− Pr
µ

[P (X,Y ) = 0 and (X,Y ) ∈ Rl]
∣∣∣∣

=
∑
l∈L

discµ(f ;Rl)

≤
∑
l∈L

discµ(f)

≤ 2c discµ(f)

Now taking log2 on both sides, we get the result.

7.4 The Inner Product function

The inner product function is defined as follows:

IP(x, y) = 〈x, y〉 (mod 2) =
n∑
i=1

xiyi (mod 2).

Let H be a 2n× 2n matrix defined as H = J − 2MIP, where J is the all-1s matrix. In other
words, H(x, y) = 1 if 〈x, y〉 = 0 (mod 2) and H(x, y) = −1 otherwise. It is easy to check
that the matrix H satisfies HHT = HTH = 2nI. Hence the spectral norm of H, ‖H‖, is√

2n. We will now use this fact to bound the discrepancy of IP with respect to the uniform
distribution unif.
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Let S × T be a rectangle. Then,

discunif(IP;S × T ) =
1

22n

∣∣∣∣∣∣
∑

x∈S,y∈T
H(x, y)

∣∣∣∣∣∣
=

1

22n
|1S ·H · 1T | [where 1S ,1T are characteristic vectors of S, T ]

≤ 1

22n
‖1S‖ · ‖H‖ · ‖1T ‖

≤ 1

22n

√
|S| · 2n · |T |

≤ 23n/2

22n

= 2−n/2

Now using Theorem 7.3 and Theorem 7.5 we have,

Rpub
1
2
−ε(IP) ≥ Dunif

1
2
−ε(IP) ≥ n

2
− log2

(
1

2ε

)
.
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A von Neumann’s min-max theorem

Consider a 2-player game as follows. There is an M×N payoff matrix A. The M rows index
ways in which player 1 can make a move, and the N rows index the ways in which player
2 can make a move. Both players simultaneously choose a move, say row i and column j.
Then player 1 has to give player 2 the amount Ai,j .

Now allow the players to be randomized. A strategy for player 1 (player 2) is a dis-
tribution σ on the rows (µ on the columns). Each player chooses a move according to
his/her strategy. The expected payoff is σTAµ. The goal of player 1 is to choose a σ that
minimizes, over the worst choice of µ, the expected payoff σTAµ. The goal of player 2 is
to choose a µ that maximizes, over the worst choice of σ, the expected payoff σTAµ. The
celebrated min-max theorem says that if a player announces his/her strategy and allows
the other player to make an adversarial choice, the expected payoff is the same no matter
which player announces the strategy. That is,

min
σ

max
µ

σTAµ = max
µ

min
σ
σTAµ.

In the setting we consider, the rows of A index deterministic protocols with cost at most
c. The columns index inputs (x, y) ∈ X ×Y. Thus µ is a distribution on inputs, and σ is a
distribution on deterministic cost c protocols ie. a randomised cost c protocol. A(P, xy) is
1 if P (x, y) = f(x, y), 0 otherwise.
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Since ∀µ, Dµ
ε (f) ≤ c, we see that maxµ minσ σ

TAµ ≤ ε. (For each µ, find the determinis-
tic cost c protocol P that works for it, and set σ to be 1 on P and 0 elsewhere. Then σTAµ is
exactly the error of P with respect to µ.) By the min-max theorem, minσ maxµ σ

TAµ ≤ ε.
Consider the distribution σ that achieves this minimum. Then the corresponding ran-
domised protocol Pσ has error at most ε on every distribution. In particular, for any input
(x, y), let µxy be the distribution that is 1 at (x, y) and 0 elsewhere; Pσ has error at most
ε on µxy. Thus for every input (x, y), Pσ has error at most ε.

B Spectral norm of a matrix

Let A be a real matrix. The spectral norm of A, denoted ‖A‖2, is defined as follows:

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= max
x 6=0

√
〈Ax,Ax〉√
〈x, x〉

(In the main text, we drop the subscript for notational convenience. )
For a square matrix X, σmax(X) denotes the largest singular value of X, and λmax(X)

denotes the largest eigenvalue of X. If X is symmetric, then XTX is positive semidefinite
(that is, ∀x, xTAx ≥ 0). If A is symmetric, then it can be shown that

‖A‖2 =
√
λmax(ATA) = σmax(A).
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