Communication Complexity 16 Sep, 2011 (@ TIFR)

10. Pointer Chasing
Lecturer: Jaikumar Radhakrishnan Scribe: Sagnik Mukhopadhyay

In today’s lecture, we will continue the discussion on index function problem and we will
introduce another problem, namely, pointer chasing problem.

10.1 Index Function Problem

The index function problem is defined as follows. Alice has a string x distributed uniformly
over {0,1}". Bob has an index ¢ distributed uniformly over [n]. The goal for Bob is to guess
x; when only one round of communication is allowed, i.e., Alice can send only one message
to Bob.

The naive protocol for this problem is that Alice sends all her bits to Bob. Then the
message length is n. Our goal is to figure out whether we can reduce the message length
using randomization and if so, how much we can reduce. Formally we want to have a lower
bound on the message length. We will show this lower bound using information theoretic
argument.

Let us fix a deterministic protocol P that computes the index function. Suppose the
error made by the deterministic protocol P is % — ¢ on uniform distribution over input.

Let M is a random variable that represent the message send by Alice, which is deter-
mined by Alice’s input X = X7 X5....X,, where X;s are independent.

Cost(P) > log(number of distict messages)
= log([support(M)])
> H(M) (By claim 9.7)
> H(M)— H(M|X)
= I(X: M) (By the definition of Mutual information)
>) I(Xi: M) (By claim 9.15) (10.1.1)

Let Pr [P errors | Alice sends message m and Bob has input i| = r!"

10-1

We know that

1
59

v

Pr [Perrors]
= Z Z Pr [Alice sends m, Bob has ¢ and P errors]

K3 m

= Z Z Pr [P errors|Alice sends m, Bob has i]. Pr [Alice sends m, Bob has i

= Eim[r]"] (10.1.2)
H(X;) — H(X;|M)

H(}) — En[H(X;|M =m)]

= 1—Ep[H(r")]

1— H[Ep(r]")] (" H is concave)

7

> I(X;: M)

I(X;: M)

v

Cost(P)

v

V
N\
[a—
|
oy
=

3

3

3
N

> n—nkE; [H [Em(r;”)ﬂ
> n—nH[E; ("] (" H is concave)
> n[l—-H(-1)] (due to (10.1.2))

o o)+ G on)
= o GG e (1))

= nloge. K1 51 (Kp, is Kullback Leibler distance!)
2 ’2

= nloge.26? [by Pinsker’s inequality]* (10.1.3)

Corollary 10.1. In any one round randomized protocol with error (1/2 — &) Alice must
send Bob at least 2log ed’n bits.

This is because of the fact that for any randomized protocol there is a deterministic
protocol which can be derived from the randomized protocol by fixing its random coin
tosses. The question is how good is this lower bound, i.e., can we design a randomized
protocol that achieves this bound?

Let P and Q be probability distributions, P(1) = p, P(0) = 1 — p and Q(1) = ¢,Q(0) = 1 — q. The
Kullback Leibler-distance is defined to be Kp,q =pln 2 + (1 —p)In g
Pinsker’s inequality: Kp, > 2(p —)2

10-2

Let us consider the natural protocol for the index function problem where Alice send
Bob a sample of (26)n bits for her input. Bob either finds the bit he needs or guesses
it. Clearly, the error probability in this case is $(1 — 2§) = 1 — 4. But the lower bound
claims that only ©(§?n) bits are needed to be transferred which is still lesser than what is
tranferred in this easy protocol.

Can we come up with a better protocol? It turns out that the answer is yes. Under
the uniform distribution on {0,1}", let us consider a ball of radius (1/2 — d)n centered at

origin. Let z be the string chosen uniformly from {0,1}". It can be shown that
Prlz € Ball(0,(1/2 — §)n)] ~ e~ ™"

Alice and Bob use shared randomness as sequence of random strings from {0,1}". Alice
points to the first string that falls in the ball of radius (1/2—0)n around her input, i.e., within
Ball(z, (1/2 — §)n) where Alice’s input is z. The expected communication is O(log e5"™) =
O(8°n) (If some event happens with some probability, then the waiting time of that event
is inverse of that probability, and the index is the log of that inverse).

10.1.1 Variant of Index Function Problem

If Bob is allowed to send logn bits to Alice in the course of the protocol, then the situation
is simple and Alice can only send the bit x; to Bob: We now look at a harder situation
where Bob is allowed to send only k bits where k << logn. If Bob is allowed to send only
1 bit, then depending on that bit, Alice can decide whether the index is on the left part of
her input or on the right part. Then Alice only needs to send n/2 bits depending on which
part Bob’s input index lies. By similar argument, we can colclude that Alice needs to send
5% bits to Bob if Bob is allowed to send £ bits to Alice and no error is allowed. We now
ask how many bits must Alice send in order for Bob to guess x; with probability (% +9).
In this case, Bob sends the k bits as before. Alice, after knowing the bits sent by Bob,
perform the one round protocol described in the previous section on Ji bits of interest of
Bob. This gives an upper bound of 0(2%52) on the communication complexity. Here the

shared randomness is the sequence of strings drawn independently from {0, 1}"/ 2%,

Is this a tight bound? For answering this question we need to show a lower bound on
the communication of this protocol. The driving idea for showing this lower bound is the
following claim.

Claim 10.2. If there is a protocol where Bob sends k bits and error is at most (% —0),
then there exists a randomized protocol with k bits of randomness where Bob sends nothing,
1 6

Alice sends the same number of bits as before and the error is at most (5 — Q—k)

This claim gives a lower bound on Alice’s communication, i.e., it implies that Alices
. . . 2
communication is at least ;‘%.

Proof. This proof actually converts the former protocol to the latter one. For doing so,
Alice guesses the trancript of Bob by tossing k fair coins, which is the shared randomness.
Consulting this guess as Bob’s actual transcript, Alice simulates the protocol on her side
and sends Bob her part of the transcript. Bob checks whether Alice’s guess is right by
simulating the protocol with Alices transcript. If Alice’s guess is wrong at some point, Bob

10-3

gives up and tosses a fair coin to guess x;. If Alice’s guess is correct, Bob sends Alice the
output of the protocol.

Now, as Alice has to guess k bits, the probability that she would guess all the bits
correctly is only 2% So with probability (1 — 2%) Alice guesses wrong and Bob has to toss
a fair coin to guess x;. On the other hand, if Alice guesses correctly, then with probability

(3 — &) Bob guesses correctly. Hence the total probability of error is at most (1 — 2%) +

(303 = (3) O

Comment: Instead gussing k bits in the above proof, if Alice sends information for
all 2% choices the error probability can be reduced to % — &, but the cost will be 2F times

the cost of protocol where Bob sends k bits. This gives us a lower bound of Q(‘Sj—k") for the
protocol where Bob sends £ bits.

10.2 Pointer Chasing Problem

The pointer chasing problem gives a tradeoff between number of rounds of a protocol and
amount of communication needed to perform the protocol. The motivation of this problem
comes from the following question: are there problems for which k-round protocol and
(k — 1)-round protocol makes a big difference in the communication complexity? The
pointer chasing problem for k-round, Pointery, is defined as follows.

There are k + 1 layers of vertices: Lo, ..., Ly. The top layer Ly has only one vertex, v,
and other layers have n vertices, and each vertex in one layer has exactly one directed edge
leading to a vertex in the next layer. The edges coming out of the even layers known only
to Alice and the edges coming out of the'odd layers are known only to Bob. Clearly, the
graph has a unique path vy, ..., v from layer Lg to Li. Alice and Bob seek to exchange
messages in order to find vy.

The problem can be solved with klogn bit messages if Bob starts. In each round, Alice
and Bob exchange the value of the pointer, which is of length O(logn). As there are k
rounds, the amount of communication is klogn.

We now ask the question: Can Pointer, be solved if (k—1) rounds are allowed and Alice
starts the protocol? Answering this question gives us an upper bound on the communication
complexity of Pointery. We will consider a few base cases and we will conclude the upper
bound for k-round protocol by similar argument.

e CASE1: k=2
For this case, if Alice starts, Bob just needs to know what value Alice has on the
vertex indexed by vy depending on which Bob can easily determine the value of vs.
As only one round of communication (from Alice) is allowed, this case is the same
as index function problem. Here Alice just sends all her bits to Bob and hence the
communication has complexity Q(nlog n).

e CASE2: k=3
In this case, let us assume that Alice sends rn bits of her input to Bob which is first
r bits of her n vertices. Hence, by the similar argument we did in Section 10.1.1,
Bob needs to send g logn bits to Alice for Alice to know the value of v3. We choose
r = loglogn for which the communication cost is O(nloglogn).

10-4

e CASE3: k=4
As before, Alice sends rn bits of her input. In return Bob sends two things: he sends
r.2" bits per vertex for the g potential vertices that Alice might point to. He also
sends the value in vg. On the last round, Alice sends 5 log n bits of her input which
is of Bob’s interest. If we choose r = nlogloglogn, then we get an upper bound of

O(logloglogn) on the communication cost.

By similar argument, we can show an upper bound of O(nlog" ! n) on the communication

cost of Pointery,, where log"~! n means taking repeated logarithm of n, (k—1) times.

10-5

	Index Function Problem
	Variant of Index Function Problem

	Pointer Chasing Problem

