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Communication Complexity 14 Oct, 2011 (@ IMSc)

14. Direct Sum (Part 1) - Introduction

Lecturer: Prahladh Harsha Scribe: Abhishek Dang

14.1 Introduction

The ”Direct Sum” problem asks how the difficulty in doing multiple instances of a task
scales. As witnessed in the following example it is not clear that n times a problem requires
n times the resource.

Example - Circuit complexity:
Task fA: given x, compute A.x
A counting argument tells us that ∃A s.t. fA requires an Ω(n2/log n) sized circuit.

Task f
(n)
A : given (x1, . . . , xn), compute (Ax1, . . . , Axn) = AX

and the last problem being an instance of matrix multiplication, is known to be solvable
with a circuit of size O(n2.38)� n.(n/log n) !

14.2 Communication Complexity

For f , g two boolean functions, we ask the question

D(f) + D(g)
?
≤ D(f, g)

or

R(f) + R(g)
?
≤ R(f, g)

Note that as formulated above, we might get trivial lower bounds on D(f, g) (similarly
R(f, g)) simple because of the bit-size of the output. In an attempt to avoid such cases we

at times consider instead a function of f and g, say, D(f) + D(g)
?
≤ D(f ⊕ g).

Example - Equality function: We know,

Rpub
1/3 (EQn) = Θ(1)and Rpriv

1/3 (EQn) = Θ(log n)

It is further obvious that Rpriv
1/3 (EQ

(l)
n ) ≤ lΘ(log n)

As a public coin protocol for EQ
(l)
n , we simply repeat the protocol for EQn taking care of

errors on the way. It is trivial to observe that Rpub
1/3l(EQn) = O(log l).

Thus, Rpub
1/3 (EQ

(l)
n ) = O(l log l).

Using a result from problem set 2 then, we have here Rpriv
1/3 (EQ

(l)
n ) = O(l log l + log n)

For l = log n
log n log logn� log2 n
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Particular values of l then give us a non-trivial instance of the direct sum problem.

Example - LNE: Consider,

LNEn,l((x1, . . . , xn), (y1, . . . , yn)) =

{
1 if xi 6= yi∀i
0 otherwise

Notice that LNEn,l is simply EQn
(l)

. With arguments entirely analogous to those in the
first example it is easy to observe

Rpriv
1/3 (EQn) = Θ(log n)

But, Rpriv
1/3 (LNEn,l) = O(l + log n)

� lRpriv
1/3 (EQn)

(for l = ω(1))

(14.2.1)

Notice however that in all the cases considered above we get only a log advantage on
the trivial bounds. We will be considering later if we can get a better than logarithmic
advantage here.

14.2.1 Deterministic and Non-deterministic case

With our main focus being the randomized case, we simply state known results for the
deterministic and non-deterministic cases. Refer Section 4.1 of Kushilevitz and Nisan’s
book on Communication Complexity [KN97] for the relevant proofs.

Theorem 14.1. For all boolean functions f, g : {0, 1}n × {0, 1}n → {0, 1}

• N(f ∧ g) ≥ N(f) + N(g)− 2 log n−O(1)

• N(∧li=1f) ≥ l(N(f)− log n−O(1))

Corollary 14.2. For f, g as above

• D(f ∧ g) ≥
√

D(f) +
√

D(g)− 2 log n−O(1)

• D(∧li=1f) ≥ l(
√

D(f)−O(log n)−O(1)

14.2.2 Randomized Case

We have so far seen two ways to give lower bounds for randomized protocols.

• Discrepancy

• Information Complexity
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Shaltiel in ”Towards proving strong direct product theorems that Discrepancy preserves
Direct sum” [Sha01] shows that the logarithm of discrepancy is additive over independent
problem runs. Note however that we only have however a lower bound Dµ

ε ≥ log 1
Disc for

the communication complexity involving discrepancy. This method, thus, does not yield
itself to the direct sum problem due to the lack of any tight upper bound.
In the other case, we already have encountered the fact that ”Information” respects direct
sum. So far we have only seen that Dµ

ε ≥ ICµ(f). Some manner or reverse inequality
would again be necessary before we can discuss Direct Sum in this framework. This is
what motivates the methods of Message and Protocol Compression. Before that however
we make a digression to reduce consideration from randomized complexity to distributional
complexity.

14.2.3 Distributional Complexity

We had used Yao’s lemma to argue Rε(f) = maxµ Dµ
ε (f). We have then,

(Dµn

ε (f (n)) ≥ nDµ
ε (f) ∀µ) =⇒ Rε(f

(n)) ≥ nRε(f)

by simply plugging in the witness of Yao’s maximum in the left hand side. Direct sum in the
distributional complexity case, as in the left hand side, would thus give us the corresponding
result for randomized complexity too.

14.3 Message and Protocol Compression

We consider here a single step in the protocol

A
X

M−→ B
Y

If there existed a A
z−→ B such that z and Y allow Bob to get M ′ distributed exactly

like the M above then z encapsulates exactly the same amount of ”information” as M.
Message compression attempts to compress each message in the protocol to it’s ”information
content”.
Consider however the case where each step in the protocol has o(1) information. In this case
there is an ω(1) blow-up with respect to information even after message compression. In an
attempt at getting around this flaw with message compression, we shift focus to ”protocol
compression”.

Definition 14.3. Let π be a randomized protocol using both public and private coins, and
µ a distribution on the inputs. Define internal information content as,

ICµ(π) = I[Y : πR|X] + I[X : πR|Y ]

We call ICµ ”internal information content” to contrast it with ”external information
content”, I(XY |πR), that we have used so far in this course. ICµ measures, intuitively,
the amount of information each party gets about the other party’s input. Notice that the
random coins in the above expression are crucial. Without the random coins the transcript
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could be completely independent of the inputs - consider the case when both parties use
one bit of the public randomness to XOR their messages with. We make some remarks and
observations about ICµ(π) without proof.

Observation 14.4.

I(X : πR|Y ) + I(Y : πR|X) ≤ I[XY : πR]

Further, in case µ is a product distribution, we have equality above.

Observation 14.5.
ICµ(π) ≤ |π|

Formalizing the notion of information content as above allows us to write down the
Protocol Compression problem as considered in [BBCR10].
Given a randomized protocol π using both public and private coins, and a distribution µ
on the inputs does there exist another protocol τ s.t.

• |τ | ≈ ICµ(π)

• at the termination of τ , Alice and Bob construct τA and τB which look like π.

14.3.1 Protocol Abstraction

It is possible to give an extension of the notion of a protocol tree from the deterministic
case to the private coins randomized protocol. In complete analogy with the deterministic
case, we have a binary tree with each internal owned by either Alice or Bob. In the
randomized case however, the owner of a node possesses a probability distribution instead
of a deterministic function of it’s inputs. So for a node v owned by Alice (say), she has a
probability distribution Pv,x supported on the children of v, and entirely similarly for Bob.
In execution of the protocol, at each step, the owner simply samples a node according to
the distribution it holds.
A randomized protocol that uses both public and private coins can simply be realized as a
distribution over private coins protocol trees.

14.3.2 Basic Idea in Protocol Compression

Alice and Bob first use public coins to sample a private coins protocol tree as mentioned
above. They then each sample a path in the tree, guessing the distributions they themselves
are not party to. Communication then transpires in an attempt to correct discrepancies in
their guessed paths. While the protocol will be described formally in the next class, we give
here the sampling technique employed for the initial guesses.

14.3.3 Path sampling

Use past notations to denote the probability distributions of the selected private coins
protocol tree. We detail Alice’s procedure here, Bob works entirely anaogously. For an
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internal node v owned by Bob, we let Pv,Y denote the distribution avg
y
Pv,y. For each

internal node v, use public coin randomness to pick κv ∈ [0, 1]. For v owned by Alice, she
chooses,

Cx(v) =

{
left child of v if κv ≤ Pv,x

right child of v otherwise

If Bob owns v then,

Cx(v) =

{
left child of v if κv ≤ Pv,Y

right child of v otherwise

Similarly Bob can choose Cy(v) for each internal node v.
The key points in this protocol are:

• If Alice and Bob used the same distribution Pv,x,y for some internal node, then they
end up selecting the same child.

• In the case when, say, Pv,x 6= Pv,X the probability of an inconsistency is related to
|Pv,x − Pv,X | i.e. the L1-norm distance between the distributions.

In the coming lectures, we propose to show that (Expected number of disagreements) ≈
log n towards a partial answer to the Protocol Compression Porblem.
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