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Communication Complexity 18th Oct 2011 (@ IMSc)

16. Direct Sum III

Lecturer: Prahladh Harsha Scribe: Karteek Sreenivasaiah

16.1 Small information cost

In the previous lecture we showed the following lemma:

Lemma 16.1. ∃C > 0, ∀ protocol π,∀µ, ∀ error ε, ∃ protocol τ such that the following holds:

• |τ | ≤ C
√
|π| ICµ(π) log(π/ε)ε

• Pr[πA(X, τ(X,Y ) 6= π(X,Y )]] ≤ 1− ε

• Pr[πA(X, τ(X,Y )) 6= πB(X, τ(X,Y ))] ≤ ε

Today we show the following direct sum like result:

Claim 16.2. For every function f , ∀µ, ∀ρ, ε > 0,

Dµn

ρ (fn) log
(
Dµn

ρ (fn)/ε
)

= Ω(ε
√
nDµ

ρ+ε(f))

Proof. A direct application of lemma 16.1 from last class on the protocol obtained from the
following lemma proves the claim.

Lemma 16.3. ∀µ, f, ε, ∃ protocol π computing f on distribution µ such that:

• |π| ≤ Dµn
ρ (fn)

• ICµ(π) ≤ 2Dµ
n

ρ (fn)
n

Now we proceed to prove the above lemma itself:

Proof. Let Π be the protocol that achieves Dµn
ρ (fn). Inputs to Π look like 〈(x1, y1), (x2, y2), . . . , (xn, yn)〉

and Π computes the answer to each pair (xi, yi). Let (X1, Y1), . . . , (Xn, Yn) denote random
variables distributed according to µn. Define W1,W2, . . . ,Wn to be random variables which
take values in X ∪ Y such that for each i, Wi = Xi with probability 1/2 and Wi = Yi with
probability 1/2. LetW denoteW1,W2, . . . ,Wn andW−i denoteW1, . . . ,Wi−1,Wi+1, . . . ,Wn.

Protocol π that computes f on (x, y) is as follows:

• Alice and Bob together pick a random coordinate j ∈ J using public randomness and
set xj ← x and yj ← y.

• Alice and Bob together pick a w−j ∈W−J using public randomness.

• For each i 6= j, Alice samples Xi conditioned on w−j .
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• For each i 6= j, Bob samples Yi conditioned on w−j .

• Run Π on 〈(x1, y1), (x2, y2) . . . , (xn, yn)〉. Output the jth answer.

Note that since Π works well on µn, π will work well when input (x, y) is drawn from µ.
Hence π has error at most that of Π. And since the above protocol π just runs Π on some
suitable constructed input, |π| ≤ |Π| = Dµn

ρ (fn) - which is the first part of the claim. Now
we proceed to prove the second part:

Dµn(f (n)) ≥ I[XY : Π|W ]

≥
∑
j

I[XjYj : Π|W ]

= nI[XJYJ : Π|WJ ]

= n(I[XJYJ : Π|JWJW−J ] + I[XJYJ : JW−J ])

= n(I[XJYJ : ΠWJJ |WJ ])

= n(I[XY : ΠWJJ |WJ ])

= n

(
I[XY : ΠWJJ |XJ ] + I[XY : ΠWJJ |YJ

2

)
= n

(
I[Y : ΠWJJ ] + I[X : ΠWJJ ]

2

)
= (n/2) ICµ(π)

If we had a better protocol compression procedure, we would have got the original direct
sum result. So we ask: For what distributions can we get good protocol compression? In
the following section we show that for product distributions we can get good protocol
compression.

16.2 Product distributions

The following is what we prove in this section:

Lemma 16.4. ∃c > 0,∀ protocols Π, ∀ product distributions µ,∀ε,∃ another protocol τ
such that:

• |τ | ≤ c ICµ(π)
polylog(π/ε)

ε

• Pr[πA(X, τ(X,Y ) 6= π(X,Y )]] ≤ 1− ε

• Pr[πA(X, τ(X,Y )) 6= πB(X, τ(X,Y ))] ≤ ε

Remark 16.5. If for a function f , the worst distribution happens to be a product distribu-
tion, then by the above lemma, f will completely respect direct sum.
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The main tool we will use is “rejection sampling”. Suppose we have a source distribution
Q and a sequence of samples x1, . . . , xn drawn from Q. The goal of rejection sampling is to
output an index i∗ (smaller the better) such that xi∗ looks like it was drawn according to
P . For eg: A sequence of coin tosses from a biased source with probability of heads 2/3 and
probability of tails 1/3. We want to sample this sequence so that we eliminate the bias.

In general a rejection sampler looks like:
For i← 1 to ∞

• Read sample xi

• Accept xi with probability a(xi)

where a : U → [0, 1]. Suppose the input distribution to the above procedure was Q and we
wanted the output distribution to be P (say), then intuitively setting a(x) = P (x)/Q(x)
should work. However this is not always possible because we want a(x) ∈ [0, 1]. So we

scale this by L = maxx
P (x)
Q(x) to get a(x) = 1

L
P (x)
Q(x) .Let T be a random variable denoting the

number of iterations that occur before termination of the procedure. Then we have:

Pr[T = 1] =
∑
x∈U

Q(x)a(x)

Suppose Pr[T = i|T ≥ i] = s then,

E[T ] =
1

s

P (x) =
∞∑
i=1

(1− s)i−1Q(x)a(x)

=
Q(x)a(x)

s

We will use rejection sampling in the following way: Suppose Alice gets x drawn from a
distribution µ and sends a message M to Bob. The message sent can be seen as a random
variable M(X) (where X is the random variable associated with Alice’s input). Now if
Alice’s input was a string x, then Alice and Bob can view the public randomness as a
sequence m1,m2, · · · ∼M(X) (since Bob knows the distribution from which Alice’s inputs
are drawn). And Alice can now do rejection sampling on this sequence to output according
to M(x). The following theorem gives an upper bound on the expected size of i∗:

Theorem 16.6. E[length(i∗)] ≤ 2I[M : X] +O(1)

A drawback of the above theorem is the O(1) in the RHS. The problem arises if in a
protocol Π, each message has only o(1) information, in which case, there will be a large
blowup when Alice tries to communicate i∗ to Bob. To tackle this problem, we modify the
protocol Π to wait and accumulate enough messages till there is large enough information
to be communicated.

As a first step: we make sure that there is no message that contains too much infor-
mation. i.e., we make every message have information content ≤ O(β) for some β < 1.
We achieve this using the following idea: instead of sending bit b, send many independent
random bits - each equal to b with a probability of 1/2 + β. The other party can take a
majority vote on the bits he/she sees to obtain the value b correctly with high probability.
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Lemma 16.7. ∃Π′, such that ∀x, y, v, j we have:

Pr[Π′(x, y)j+1 = 1|Π(x, y)≤j = v≤j ] ∈ (1/2− β, 1/2 + β)

|Π′| ≤ O

(
|Π| log(|Π/ε)

β2

)
We shall prove this lemma in the next lecture.
[?, ?, ?]
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