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24. Degree/Discrepancy Method

Lecturer: Prahladh Harsha Scribe: Sajin Koroth

In today’s lecture, we will discuss duality-based methods to prove lower bounds on com-
munication complexity of functions. In particular, we will discuss the degree/discrepancy
method due to Sherstov [She09]. The main reference for today’s lecture is the survey on
application of dual polynomials in communication complexity [She08].

24.1 Duality based lower bounds

To motivate the use of duality in proving lower bounds, let us consider a typical commu-
nication complexity problem. For a function f , the communication complexity is cost of
the best protocol π solving f . The cost and definition of a protocol solving f is defined
according to the type of communication complexity (eg., deterministic, non-deterministic,
randomized etc. Hence, it can be casted as a minimization problem,

R(f) = min
π solves f

Cost(π).

To prove lower bound on R(f), one has to lower bound all protocols π “solving” f . But if
one could instead write the “dual” of the above minimization program, i.e., a maximization
problem over the corresponding dual objects (which we denote with L) with the associated
dual cost function (which we denote with ρ), i.e.

R(f) = max
l←L

ρ(l).

Rewriting in the dual form has the following advantage: to show that R(f) is large it is
sufficient to exhibit a specific l ∈ L say l∗ such that ρ(l∗) is large. Such an l∗ is called
the dual witness. It might not be always possible to cast the problem in the primal-dual
framework, so one might have to relax the original problem to a convex optimization problem
whose dual can then be written. We will see several instances of such relaxations and the
corresponding dual formulations in the next few lectures.

Recall that we already used duality (in the form of Yao’s min-max theorem) in proving
lower bounds for randomized communication complexity.

Rε(f) = max
µ

Dµ
ε (f).

Here, Rε(f) is the randomized communication complexity for f with error at most ε and
Dµ
ε (f) is the distributional communication complexity of f under distribution µ and error

ε. The dual witness here is a hard distribution for f , i.e, a distribution µ such that Dµ
ε (f)

is large.
How does one come up with a “hard” distribution or a “good” dual witness in general?

In today’s lecture, we will see one such technique due to Sherstov, that produces hard
distributions based on functions with large threshold degree.
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24.2 Discrepancy bound

We will begin by recalling the discrepancy of a function.

discµ(f) = max
R

discµ(f ;R) = max
R

∣∣∣∣ Pr
(x,y)←µ

[f(x, y) = 1]− Pr
(x,y)←µ

[f(x, y) = 0]

∣∣∣∣
= max

R

∣∣∣∣∣∣
∑

x∈X,y∈Y
(−1)f(x,y)µ(x, y)

∣∣∣∣∣∣ ,
where the maximum is taken over all rectangles R = S × T . Discrepancy is used to lower
bound distributional complexity.

Dµ
1
2
−ε(f) ≥

(
log

1

discµ(f)
− log

1

2ε

)
.

This, combined with Yao’s minmax lemma yields the following

R 1
2
−ε(f) = max

µ
Dµ

1
2
−ε(f) ≥ max

µ

(
log

1

discµ(f)
− log

1

2ε

)
.

Thus, to lower bound R(f) it suffices to exhibit a distribution (dual witness) µ such that
discµ(f) is very small. To show discµ(f) is small, one needs to show that for all rectangles
R, discµ(f ;R) is small. It will be more convenient to work with a uniform (rectangle
independent) bound for discrepancy. The following bound achieves this.

First for some notational convenience. It will be nicer to work with {±}-valued functions
instead of {0, 1}-valued functions. For any f : X × Y → {±} and a distribution µ on the

input space X × Y , for the purposes of notational brevity define ψ(x, y) , ψfµ(x, y) ,
f(x, y)µ(x, y). In this notation, discrepancy of a function is given by

discµ(f) = max
R

∣∣∣∣∣∣
∑

x∈X,y∈Y
ψ(x, y)

∣∣∣∣∣∣ .
Lemma 24.1. For any function f : X × Y → {±1}(

discµ(f)

|X| · |Y |

)2

≤ E
x∈X

∣∣∣∣ E
y,y′∈Y

[
ψfµ(x, y)ψfµ(x, y′)

]∣∣∣∣ .
Proof. Let R = S × T be the rectangle such that discµ(f) = discµ(f ;R). Define the two
random variables α : X → {±1} and β : Y → {±1} as follows:

αx ,

{
1 if x ∈ S,
±1 with equal probability if x /∈ S

, βy ,

{
1 if y ∈ T,
±1 with equal probability if y /∈ T.

.

We thus have that for (x, y) ∈ S × T , αxβy = 1, while for (x, y) /∈ S × T , Eα,β[αxβy] = 0.
Hence,

discµ(f) = discµ(f ;R) =

∣∣∣∣∣∣ Eα,β
 ∑
x∈X,y∈Y

αxβy · ψ(x, y)

∣∣∣∣∣∣ .
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Hence, there exist functions α, β such that

discµ(f) ≤

∣∣∣∣∣∣
∑

x∈X,y∈Y
αxβy · ψ(x, y)

∣∣∣∣∣∣ .
Or equivalently,

discµ(f)

|X| · |Y |
≤

∣∣∣∣ E
(x,y)∈X×Y

[αxβyψ(x, y)]

∣∣∣∣ .
Squaring both sides and applying Jensen’s inequality we have,(

discµ(f)

|X| · |Y |

)2

≤
(
E
x,y

[αxβy · ψ(x, y)]

)2

=

(
E
x

[
αx · E

y
[βy · ψ(x, y)]

])2

≤ E
x

[(
E
y

[βy · ψ(x, y)]

)2
]

[Since (EX)2 ≤ EX2 and α2
x = 1]

= E
x

[
E
y,y′

[
βyβy′ · ψ(x, y)ψ(x, y′)

]]
= E

y,y′

[
βyβy′ · E

x

[
ψ(x, y)ψ(x, y′)

]]
≤ E

x

[∣∣∣∣ Ey,y′ [ψ(x, y)ψ(x, y′)
]∣∣∣∣] . [Since |βyβy′ | = 1]

Thus, proved.

In later lectures, we will see a generalization of the above bound to higher dimensions.

24.3 Large threshold degree as dual witness

Definition 24.2 (threshold degree). A function f : {±1}n → {±1} is said to be sign
represented by a polynomial p : {±1}n → R if and only if for all x ∈ {±1}n, p(x)f(x) > 0,
i.e. the sign of p(x) and f(x) are same for all x ∈ {±1}n.

For a function f : {±1}n → {±1}, the threshold degree, denoted by deg±(f), is defined
as follows

deg±(f) , min {d : f can be sign represented by a degree d polynomial } .

Note that a trivial upper bound on the threshold degree of any Boolean function f :
{±1}n → {±1} is n as any function can be sign represented (in fact exactly represented)
by a polynomial of degree n via interpolation.

Which functions have large threshold degree? The parity functions have large threshold
degree. More precisely, the functions χS(x) =

∏
i∈S xi for subsets S ⊆ [n] have threshold

degree exactly |S|. We will now give a dual characterization of functions having large
threshold degree.
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24.3.1 Dual characterization of threshold degree

We will give a dual characterization using the following theorem about duality.

Theorem 24.3 (Gordon’s transportation theorem). For any matrix A ∈ Rn×m, exactly
one of the following holds

1. There exists a u, such that uTA > 0

2. There exists a v ≥ 0, v is a non-zero vector, such that Av = 0.

In the above v > 0 means that each coordinate of v is > 0.

Proof. Consider the columns of the matrix A. By Farkas’ lemma, either the all zeros vector
0 lies in the convex hull of the column vectors or there is a separating hyperplane separating
the convex hull of the column vectors from 0 (but not both). In the former case, we have
a non-zero vector v ≥ 0 such that Av = 0. In the latter case, we have a vector u such that
uTA > 0. Thus, proved.

From this theorem we have the following nice corollary,

Corollary 24.4 (dual characterization of threshold degree). For a function f : {±1}n →
{±1}, exactly one of the following is true

1. deg±(f) ≤ d.

2. There exists a distribution µ on {±1}n such that E
x←µ

[f(x)χS(x)] = 0 for all S, |S| ≤
d.

The corollary tells that either f has low threshold degree or there exists a distribution
µ such that all the low-order monomials (or parity functions) have zero correlation with
the function f under µ. Equivalently, f has zero correlation with functions of d or fewer
variables.

Proof. Consider the following matrix,

A = [f(x)χS(x)](S,x) .

The rows of A are indexed by sets S ⊆ {±1}n, |S| ≤ d and columns are indexed by x ∈
{±1}n. Gordon’s transportation theorem tells us that either there is a vector (uS , |S| ≤ d)
such that uTA > 0 or there exists a non-zero non-negative vector (vx, x ∈ {±1}n) such that
Av = 0 (but not both). In the former case, set p(x) =

∑
uSχS(x). The fact that uTA > 0 is

equivalent to the fact that p(x)f(x) > 0 for all x ∈ {±1}n. Hence, f is sign represented by a
polynomial of degree at most d, i.e., deg±(f) ≤ d. In the latter case (i.e., Av = 0), consider
the distribution µ on {±1}n defined as the normalized v (i.e., µ(x) , v(x)/

∑
x v(x)). The

fact that Av = 0 is equivalent to the fact that Ex←µ[f(x)χS(x)] = 0 for all S such that
|S| ≤ d. Thus, proved.
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24.3.2 Low discrepancy function from large threshold degree function

In this section, we will show how to transform a function with large threshold degree into
a function with low discrepancy (and hence large randomized communication complexity).

Theorem 24.5 (degree/discrepancy theorem [She09]). Let f : {±1}n → {±1} be such that
deg±(f) ≥ d. Then for every N ≥ n, the function F : {±1}N ×

(
[N ]
n

)
→ {±1} defined as

F (x, V ) , f(x|V ) satisfies

discλ(F ) ≤
(

4en2

Nd

)d/2
,

for some distribution λ on the {±1}N ×
(

[N ]
n

)
.

In the above y|V represents the restriction of y to the coordinates in the set V . Formally,
if V = {v1 < v2 < · · · < vn}, then y|V = yv1yv2 . . . yvn .

Proof. Since deg±(f) ≥ d by Corollary 24.4, we are guaranteed a distribution µ such that
for all functions g on fewer than d variables Eµ [f(x)g(x)] = 0. The hard distribution λ is
obtained from µ as follows.

λ(y, V ) ,
µ(y|V )(
N
n

)
· 2N−n

.

An informal description of λ is as follows: Choose V uniformly at random from
(

[N ]
n

)
. y is

chosen according to the following distribution: y|V is chosen according to the distribution
µ while the remaining N − n coordinated of y are chosen independently from the uniform
distribution on {±1}.

Using the discrepancy bound lemma 24.1, we get,(
discλ(F )

2N ·
(
N
n

))2

≤ E
V,W

[∣∣∣∣Ey [ψFλ (y, V )ψFλ (y,W )
]∣∣∣∣] ,

i.e., (discλ(F ))2 ≤ 4N ·
(
N

n

)2

· E
V,W

[∣∣∣∣Ey [ψFλ (y, V )ψFλ (y,W )
]∣∣∣∣] ,

where ψFλ (y, V ) = F (y, V )λ(y, V ) which upon substitution for F and λ yields f(y|V ) µ(y|V )

(Nn)·2N−n
.

We can thus, rewrite the final inequality as follows.

(discλ(F ))2 ≤ 4n · E
V,W

[∣∣∣∣Ey [f(y|V )f(y|W )µ(y|V )µ(y|W )]

∣∣∣∣] .
Define Γ(V,W ) , Ey

[
ψfµ(y|V )ψfµ(y|W )

]
, we then have

(discλ(F ))2 ≤ 4n · E
V,W

[|Γ(V,W )|] . (24.3.1)

We now analyze |Γ(V,W )|. We will show that Γ(V,W ) is 0 if V and W have small inter-
section and is not too large when V and W have large intersection. We will then complete
the proof by choosing N sufficiently large compared to n, such that with high probability
V and W , two random n-sized subsets of [N ] will have very small intersection. This would
in turn imply that EV,W [|Γ(V,W )|] (and hence discrepancy of F ) is small.
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Claim 24.6 (small intersection). If |V ∩W | < d then Γ(V,W ) = 0

Proof. Wlog, assume V to be the subset {1, . . . , n}. Then,

Γ(V,W ) = Ey1,...,yN
[
µ(y1, . . . , yn)f(y1, . . . , yn) · ψfµ(y|W )

]
= E

y1...yn

[
µ(y1, . . . , yn)f(y1, . . . , yn) · E

yn+1...yN

[
ψfµ(v|W )

]]
.

Since |V ∩W | < d, g(y1, . . . , yn) , E
yn+1...yN

[
ψfµ(v|W )

]
is a function of less than d variables

in y1, . . . , yn. Hence by Corollary 24.4

Γ(V,W ) = E
y1...yn

[µ(y1, . . . , yn)f(y1, . . . , yn) · g(y1, . . . , yn)]

=
1

2n
· E

(y1,...,yn)←µ
[f(y1, . . . , yn) · g(y1, . . . , yn)] = 0.

Claim 24.7 (large intersection). If |V ∩W | = k and k ≥ d, then |Γ(V,W )| ≤ 2k−2n.

Proof. Wlog, let V = {1, . . . , n} and let W = {1, . . . , k} ∪ {n+ 1, . . . , 2n− k}.

Γ(V,W ) ≤ E
y

[µ(y1, . . . , yn) · µ(y1, . . . , yk, yn+1, . . . , y2n−k)]

= 2k−2n ·
∑

y1,...,y2n−k

µ(y1, . . . , yn) · µ(y1, . . . , yk, yn+1, . . . , y2n−k)

≤ 2k−2n.

The last step follows since η(z1, . . . , z2n) = µ(z1, . . . , zn) · µ(zn+1, . . . , z2n) is a probability
distribution over {±1}2n and the summation is over 22n−k distinct elements in {±1}2n.

We now use the above claims to bound the discrepancy of F .

(discλ(F ))2 ≤ 4n · E
V,W

[|Γ(V,W )|] [From (24.3.1)]

≤ 4n ·
n∑
k=d

Pr [|V ∩W | = k] · 2k−2n

=
n∑
k=d

(
n
k

)
·
(
N−n
n−k

)(
N
n

) · 2k

≤
n∑
k=d

(
n

k

)( n
N

)k
2k [By Sterling’s approximation]

≤
n∑
k=d

(ne
k

)k (2n

N

)k
=

n∑
k=d

(
2n2e

Nk

)k
≤

n∑
k=d

(
2n2e

Nd

)k
.
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If (2n2e/Nd) < 1, then the above sum is a geometric series and can be bounded by
(4n2e/Nd)d. This bound is true even otherwise since discrepancy is at most 1. We thus
have,

(discλ(F ))2 ≤
(

4n2e

Nd

)d
.

Thus, proved.

Suppose f : {±1}n → {±1} is a function on n inputs with threshold degree d, then we
can generate a function F with exponentially small discrepancy (in terms of d) by setting
N = d16en2/de.

discλ(F ) ≤

 4en2[
N = 16en2

d

]
d

d/2

= 2−d.

24.4 Connection to AC0 and majority circuits

An easy corollary of the above theorem is that the function F corresponding to parity
function χ[n] has large communication complexity since deg±(χS) = |S|. Recall that parity

is not in AC0. In this section, we will show that there are considerably simpler functions
which also exhibit large threshold degree.

An interesting depth 2 AC0 function, arising from learning theory, is the Minksy Papert
function MPm defined on 4n3 variables as follows:

MPm(x) =
m∨
i=1

4m2∧
j=1

xi,j .

Note that the Minsky Papert function can be sign represented by a degree m polynomial
as follows.

MPm({xi,j}) = sign

(
−1

2
+

m∏
i=1

(
4m2 + xi,1 + xi,2 + xi,3 + · · ·+ xi,4m

))
.

Hence the threshold degree of MPm is bounded by m, deg±(MPm) ≤ m. Minsky and Papert
showed that this is in fact tight.

Theorem 24.8 (Minsky Papert Theorem [MP87]). deg±(MPm) ≥ m.

We can now build the function FMP corresponding to the Minsky-Papert function to
obtain a problem in depth 3 AC0 with exponentially small discrepancy (and hence polyno-
mially large communication complexity). More precisely, plugging deg±(MPm) = m into
the degree/discrepancy theorem 24.5, we get (by setting N = d16en2/me = d256em5e),

discλ(FMPm) ≤ 2−m ≤ e−Θ(N
1
5 ).
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MPm is in depth 2 AC0. It is easy to see that FMPm is in depth-3 AC0 as

FMPm(x, y(1), . . . , y(n)) = MPm(x|S)

where S is the subset of indexes represented by y(1), . . . , y(n), each y(i) ∈ {±1}logN . Note
that FMPm can be written as

F (x, y) = MPm(ϕ(x, y(1)), . . . , ϕ(x, y(n)))

where ϕ(x, y(i)) returns the value x at the index represented by the binary number y(i). Each
ϕ(x, y(i)) can be computed by a DNF formula having 2logN clauses and each clause having

logN + 1 (logN literals corresponding to values of y
(i)
j and one extra literal corresponding

to the value of x at the index represented by the binary number y(i)) literals, which also can
be represented by a CNF formula of similar size. We are interested in CNF representation
because then the second layer AND gates of Minsky-Papert function can be collapsed with
the AND gates of the CNF formula to obtain a depth 3 AC0 circuit for F (x, y). Here we
have constructed an explicit depth 3 circuit of exponentially small discrepancy.

Corollary 24.9. The function FMPm in depth 3 AC0 has discrepancy at most 2−Ω(N1/5)

(wrt. to some explicit distribution) and hence has randomized communication complexity
R1/2−ε(FMPm) at least Ω(N1/5)−O(log(1/ε)).

We will use the above property about FMPm to show that it cannot be written as a sub-
exponential sized majority of majority circuit. More precisely, we will show the following
(even stronger) statement.

Theorem 24.10 ([She09]). Suppose FMPm = MAJ(h1, . . . , hs), where each hi is a linear
threshold function1, then s is exponential.

This is in stark contrast to the following theorem about depth 2 AC0 computable func-
tions due to Allender.

Theorem 24.11 ([All89]). Any function computable by a depth 2 AC0 circuit can be written
as a quasi-polynomial sized Majority of Majority circuit.

To prove Theorem 24.10, we first need the following theorem due to Nisan which relates
discrepancy to the size of majority of threshold circuits.

Theorem 24.12 (communication complexity of threshold functions [Nis94]). Let f : {±1}n →
{±1}, be a linear threshold function. Then Rpub

ε (f) = O(log n+ log 1
ε ), for any partition of

the variables and any ε = ε(n).

Proof of Theorem 24.10. Let us design a (public coins) randomized protocol for FMPm as-
suming FMPm = MAJ(h1, . . . , hs) where each hi is a linear threshold function. The two
parties can randomly pick (using public coins) an i ∈ {1, 2, 3, . . . , s} and evaluate hi with
probability 1 − 1

4s using Theorem 24.12. The total communication complexity of this pro-
tocol would be O(log s + logN) and would predict F correctly with probability at least

1A linear threshold function is any function of the form sign(w1x1+w2x2+· · ·+wnxn−θ) where wi, θ ∈ R.
Note that MAJ(x1, . . . , xn) = sign(x1 + x2 + · · ·+ xn)
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(
1
2 + 1

2s

)
− 1

4s = 1
2 + 1

4s , on every input (this is because if at least 1
2s+ 1 of hi’s will have the

value of the majority and hence the probability that value of hi is the majority is at least
1
2
s+1

s = 1
2 + 1

s and then one has to subtract the probability that Nisan’s protocol errors to
get the total error bound). Thus we get

Rpub
1
2
− 1

4s

(FMPm) = O(logN + log s).

Comparing this with Corollary 24.9 we get that s = exp(Ω(N
1
5 )). Hence the theorem.
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