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Communication Complexity 2 Dec, 2011 (@ IMSc)

29. Other Lower Bound Methods

Lecturer: Meena Mahajan Scribe: Meena Mahajan

In this last lecture of the course, we give an overview of some norm-based lower bound
methods, and also see how they are very elegantly unified using the language of LP duality.
Finally, we mention further topics that we have not considered in this course at all.

29.1 Duality-based Methods: the general strategy

Let A be a sign matrix A ∈ {−1,+1}m×n, and let CC(A) denote the communication
complexity of the associated function in the model of interest (deterministic, randomized
...). The general framework in which norm-based lower bounds work has three major steps:

Step 1. Embed the problem into reals. Specifically, find a function G : Rm×n → R, such
that for every sign matrix A, G(A) ≤ CC(A). Now minimize G to get a lower bound
on CC. Since G has a continuous domain as opposed to the discrete domain of CC,
hopefully more mathematical tools will be available and will make minimization easier.

If G is suitably nice, for instance if it is a convex function, then optimizing G could
be significantly easier.

Of course, there is a price paid: G is a lower bound on CC, but it could be much less
than CC. We can’t say much right away about the quality of the lower bound.

Step 2. Reformulate “Minimize G” as “Maximize G∗”.

Obtaining a lower bound on minG may be hard since we need to show that for every
A, G(A) is at least as large as the target bound. Obtaining a lower bound on maxG∗

ought to be easier, since it suffices to show that there exists a single B with G∗(B) as
large as the target bound. That is, we just need to find a single dual witness.

Note that transforming minG to maxG∗ may not always be possible. It is possible if
G is a “nice” function.

Step 3. Find a good witness B. Conclude that CC(A) ≥ G∗(B).

Typically, the functions G used are some kind of norm defined on any matrices, not just
sign matrices. We will see several examples of norm-based lower bound methods.

29.2 Lower bounds for deterministic communication D(A)

Before moving on to the norm-based methods, it is instructive to see how some of the earlier
lower bound techniques (roughly) fit this duality framework.
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The fooling set technique in this framework

One of the earliest lower bound methods we saw was the fooling set method: if function f
has a fooling set of size k, then D(A) is at least as large as log k. This fits into the above
framework:

Step 1. Let C(f) denote the minimum number of monochromatic rectangles partitioning
the input space, and define G as G(f) = log(C(f)). Then D(f) ≥ G(f).

Note that, we didn’t embed the problem into reals, but stayed in the discrete world.

Step 2. If F is any fooling set for f , then C(f) ≥ |F |. So let G∗(f) be defined as the log
of the size of the largest fooling set. Then G(f) = log(C(f)) ≥ G∗(f).

Step 3. Find a large fooling set of size k, then G∗(f) ≥ log k.

The rank method in this framework

The rank lower bound D(A) ≥ log rank(A) also can be stated in this format.

Step 1. If we can find r pairs of vectors xi, yi such that Mf =
∑r

i=1 xiy
t
i , then Mf has

rank no more than r. We can always find C(f) pairs of vectors like this. So r ≤ C(f).
Similarly, the positive rank rank+(Mf ) is the smallest r for which we can find r pairs
of non-negative vectors as above. Clearly,

rank(Mf ) ≤ rank+(Mf ) ≤ C(f)

We can use log rank(Mf ) or log rank+(Mf ) as G(f).

Note that here we moved to the continuous domain: G is defined for any matrix over
reals, not just sign matrices.

Step 2. This step is easy: rank(M) is most naturally stated as a maximization, namely,
the maximum number of linearly independent rows or columns in M . (Similarly for
rank+, with an appropriate notion of independence.)

Step 3. Any large linearly independent set of rows / columns is a dual witness.

More general norm-based methods take off from here; norms are used to lower bound
the rank. Thus C(f) ≥ log(rank(Mf )) ≥ log(some norm of Mf ). Thus lower bounding
such a norm is weaker than lower bounding rank itself. But it is very useful in ran-
domised/multiparty settings, where generalisations of rank may not be easy to compute.
For now, we will see such bounds for the deterministic case.

29.2.1 The Trace Norm

The trace norm of a matrix is defined as follows: Let M be an m×n matrix of rank r. Let
σ be the vector of its r non-zero singular values, σ = 〈σ1, σ2, . . . , σr〉. The trace norm of A
is the `1 norm of σ;

‖A‖tr = ‖σ‖1 =

r∑
i=1

|σi|
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Recall that in contrast, the Frobenius norm of A is the `2 norm of σ, and also satisfies

‖A‖F = ‖σ‖2 =

√√√√ r∑
i=1

|σi|2 =

√ ∑
i∈[m],j∈[n]

A2
ij

Using the Cauchy-Schwartz inequality, we see that

‖A‖tr =
r∑
i=1

|σi| ≤
√
r

√√√√ r∑
i=1

|σi|2 =
√
r‖A‖F .

Hence

Proposition 29.1. For every matrix A,

rank(A) = r ≥
(
‖A‖tr
‖A‖F

)2

.

In particular, if A is a sign matrix, then ‖A‖2F = mn. Hence for any sign matrix A,

rank(A) ≥ ‖A‖
2
tr

mn . Along with the log rank bound, this yields

Theorem 29.2. For any m× n sign matrix A, D(A) ≥ log
(
‖A‖2tr
mn

)
.

Example 29.3. If A is the sign matrix for the the Inner Product function, then it can be
verified that ‖A‖2tr = 23n. So D(A) ≥ log 23n

2n2n = n, and hence D(IP ) = n.

One drawback of the trace norm is that the lower bounds it yields are not “monotone”.
For instance, consider the sequences of matrices Hk,Mk defined as follows:

H1 =

(
+1 +1
+1 −1

)
, Hk = H⊗k1 , Mk =

(
Hk Jk
Jk Jk

)
, where Jk is the 2k × 2k all-ones matrix.

It can be verified that ‖Hk‖tr = 23k/2, and ‖Mk‖tr = 23k/2 + 3 · 2k. Clearly, D(Hk) ≤
D(Mk) ≤ 2 + D(Hk) ≤ 2 + k. Using the trace norm bound, we get the lower bound
D(Hk) ≥ log 23k/(2k × 2k) = k. But we only get

D(Mk) ≥ log

(
(23k/2 + 3 · 2k)2

2k+1 × 2k+1

)
∼ k − 2.

Though the complexity has increased in going from Hk to Mk, the lower bound via the
trace bound has decreased. Intuitively, this happens because the norm for Mk gives equal
weightage to all parts of Mk, whereas we need to somehow focus on the “difficult” part Hk.

29.2.2 The γ2 Norm

This bound attempts to rectify the non-monotonicity of the trace norm bound. It allows
us to focus on any chosen submatrix and take its trace norm, and selects the choice that
maximises the value. A submatrix can be picked by taking the pointwise product (also
known as Hadamard product or Schur product) of A with a suitably chosen 0-1 matrix
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B. (The Hadamard product of two matrices X,Y , denoted Z = X ◦ Y is defined as
Zij = XijYij .) In the γ2 norm, we further relax the condition that B is 0-1, but require it
to be of normalised rank 1 (expressible as uvt for vectors unit u, v). That is,

γ2(A) = max
u,v:‖u‖=‖v‖=1

‖A ◦ uvt‖tr

Generalizing the trace norm bound, we use Proposition 29.1 to see that for every matrix

A, and every rank one matrix W = uvt, rank(A) ≥ rank(A ◦ uvt) ≥
(
‖A◦uvt‖tr
‖A◦uvt‖F

)2
. Further,

if A is a sign matrix and u, v are unit vectors, then ‖A ◦ uvt‖2F = ‖u‖22 · ‖v‖2 = 1. Hence

rank(A) ≥ (γ2(A))2.

This, with the log rank bound, yields

Theorem 29.4. For any m× n sign matrix A, D(A) ≥ 2 log γ2(A).

Note that the γ norm of a matrix can be computed efficiently (Step 3 of the General
Strategy) using semi-definite programming.

29.2.3 The µ Norm and the nuclear ν norm

Recall the monochromatic cover bound: 2D(A) ≥ C(f) = min{r : A =
∑r

i=1 αiRi} where
each αi is in {±1} and each Ri is a rectangle, that is, a rank-one Boolean matrix. Relaxing
the rectangle constraint by allowing Ri to be any rank-one matrix gives the log rank bound.
Instead, we can relax the constraint on the weights αi; then, instead of the number of αi,
the measure is the total weight. This gives the µ norm, formally defined below.

µ(A) = min

{∑
|αi| :

A =
∑

i αiRi, α ∈ R, Ri is Boolean rank-one
(a combinatorial rectangle)

}
Similarly, allowing arbitrary real weights and also relaxing the rectangle constraint to allow
any rank-one sign matrix gives the nuclear norm ν(A) formally defined below.

ν(A) = min
{∑

|αi| : A =
∑

i αixiy
t
i , α ∈ R, xi, yi are sign vectors

}
Clearly, rank(A) is bounded from below by µ(A) and ν(A). It is known that for every
matrix A,

γ2(A) ≤ ν(A) ≤ µ(A) ≤ 4ν(A)

Hence

Theorem 29.5. For any m× n sign matrix A, D(A) ≥ logµ(A) ≥ log ν(A).

29.2.4 Bounding a norm via the dual norm

To use the γ, µ or ν (or any other) norms to bound D(A), we must bound the norm itself.
This can be done via the dual norm defined below – this is Step 2 of the general strategy.
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Definition 29.6. For any norm Φ, the dual norm Φ∗ is given by the expression

Φ∗(A) = max
Z:Φ(Z)≤1

〈A,Z〉 = max
Z:Φ(Z)≤1

tr(AZt)

Unfolding this definition, we can show that ν∗(A) is given by the infinitiy-to-one norm
‖A‖∞→1; µ∗(A) is given by the cut-norm of A; and γ∗(A) is given by a kind of SDP
relaxation of µ∗.

ν∗(A) = max
y:‖y‖∞≤1

‖Ay‖1

µ∗(A) = max
x∈{0,1}m,y∈{0,1}n

∑
i,j

Aijxiyj

29.3 Approximate norms and randomized communication

Bounding randomized communication needs a further extension of the notion of norms, to
approximate norms. This is defined as follows:

Definition 29.7 (Approximate Norm). Let Φ be any norm, α ≥ 1 any real value, and A a
sign matrix. The α-approximate Φ norm of A, denoted Φα(A), is given by the expression

Φα(A) = min
B: ∀i,j, 1≤AijBij≤α

Φ(B)

The approximate norm bears a relation to randomized communication similar to the
relation between the norm and deterministic communication.

Theorem 29.8. For any norm Φ, if there is an absolute constant c such that for every
sign matrix A, 2cD(A) ≥ Φ(A), then for every sign matrix A, for every ε < 1/2, and for
α = 1

1−2ε the following is true:

cRε(A) ≥ log Φα(A)− logα

Proof. Recall the mainstay of randomized communication lower bounds, Yao’s lemma:

Rε(A) = max
µ

Dµ
ε (A)

The hard direction of this lemma is Rε(A) ≤ maxµ Dµ
ε (A). Viewing an optimal randomized

protocol as a distribution on deterministic protocols, we see that there are sign matrices
B1, B2, . . . , Bm, and a probability distribution (p1, . . . , pm), such that for each i ∈ [m],
D(Bi) ≤ Rε(A), and ‖A−

∑
i∈[m] piBi‖ ≤ 2ε.

Consider the matrix B = 1
1−2ε

∑
i piBi = α

∑
i piBi. Then, from the error bound of the

protocol, we have for each x, y, 1 ≤ A(x, y)B(x, y) ≤ α = 1
1−2ε . Hence

Φα(A) ≤ Φ(B) ≤ α
∑
i

piΦ(Bi) ≤ αmax
i

Φ(Bi) ≤ αmax
i

2cD(Bi) ≤ α2cRε(A),

yielding the claimed bound.
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29.4 Unifying these techniques via LP Duality: the Jain-
Klauck partition bound

For randomized communication, we have seen several kinds of lower bounds:

• Rectangle bounds – discrepancy, corruption bounds,

• Norm-based bounds - γ2, . . .,

• Information-theoretic bounds.

All of these can be stated in the language of linear programming (LP) duality. This gives
the partition bound and a weaker version, the smooth rectangle bound. We will see now how
to do this.

The first task is to formulate the search for an optimal randomzied protocol as a linear
programming instance. Let f : X × Y → Z be a partial function, and imagine that we
have an ε-error randomized protocol Π for f . Construct (conceptually) a matrix with rows
indexed by all combinatorial rectangles and columns by random coin choices of Π. (The
number of rows is (2|X| − 1)(2|Y | − 1); the number of columns can be infinite.) Fill up the
entries as follows:

Entry(R, r) =

{
z if in deterministic protocol Πr, R is a leaf rectangle labeled z
⊥ otherwise

Let q(r) denote the probability that protocol Πr is chosen. We want to search for the
best q with acceptable error. We write the first set of constraints to bound the error. For
each x, y such that f(x, y) is defined, we require

1− ε ≤ Pr
r

[Π(x, y) = f(x, y)] =
∑

R3(x,y)

 ∑
r:R is a leaf in Πr, labeled f(x, y)

q(r)

 =
∑

R3(x,y)

w′f(x,y),R

where we define variable w′z,R as the inner sum

w′z,R = Pr[R is a leaf labeled z] =
∑

r:R is a leaf in Πr, labeled z

q(r).

Thus for each x, y ∈ f−1 we have a constraint:∑
R3(x,y)

w′z,R ≥ 1− ε

Also, for each z ∈ Z and each rectangle R we have a constraint:

0 ≤ w′z,R ≤ 1

Now we fill in the remaining constraints. For every x, y, the protocol Π must output some
value. That is,

∑
z∈Z Pr[Π(x, y) = z] should be 1. Using the new variables we have defined,

we express this constraint as: ∑
z∈Z

∑
R3(x,y)

w′z,R = 1.
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Finally, we need to relate the variables w′ to the cost c of the protocol.

2c = 2c
∑
r

q(r) ≥
∑
r

q(r) [# of leaf rectangles in Πr]

=
∑
r

q(r)

∑
z

∑
R:leaf in Πr labeled z

1


=

∑
z

∑
R

 ∑
r:R is a leaf in Πr labeled z

q(r)


=

∑
z

∑
R

w′z,R

Putting all this together, we can now define the primal LP whose optimum is 2Rε(f):

min
∑
z

∑
R

wz,R

subject to

∀(x, y) ∈ f−1 :
∑

R3(x,y)

wf(x,y),R ≥ 1− ε

∀(x, y) :
∑
z

∑
R3(x,y)

wz,R = 1

∀z,R : wz,R ≥ 0

Note that for any function f , this LP is feasible: a naive deterministic protocol for f gives
a feasible point. The LP is also bounded, because the objective function is non-negative.
Hence by strong duality, the optimum of this primal LP equals the optimum of the dual
LP, and any feasible solution for the dual LP lower bounds the opt of the primal. Let us
write the dual LP. Use multipliers µxy for the error constraints, and multipliers ψxy for the
output-some-value constraints. Then the dual LP can be formulated as:

max
∑

(x,y)∈f−1

(1− ε)µxy +
∑
(x,y)

ψxy

subject to

∀(x, y) ∈ f−1 : µxy ≥ 0

∀z,R :
∑

(x,y)∈f−1∩R

µxy +
∑

(x,y)∈R

ψxy ≤ 1

The preceding discussion directly leads to the partition bound as stated below:

Theorem 29.9 (Partition Bound; Jain & Klauck [JK10]). For any function f , let prtε(f)
denote the optimum value of the objective function of the primal/dual LPs formulated above.
Then

Rpub
ε (f) ≥ log prtε(f)
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For each of the methods discrepancy, generalised discrepancy, norm-based bounds, Jain
and Klauck showed that the method yields a dual-feasible point of the dual LP. Thus this
partition bound subsumes all earlier duality-based bounds!

One may ask why bother to study other methods now that we have the stronger partition
bound. The point is that the partition bound is a unifying framework, but it does not tell
us how to get the dual witness. For that step we still need a more specific method.

29.5 Topics not covered

• Norm-based methods: we just skimmed the surface today. There’s a wealth of stuff
here ...

• Quantum communication complexity. In the quantum world, we need different lower
bound techniques.

• The polynomial hierarchy in communication complexity ...

• Applications of multiparty (NOF) communication complexity:

– Time-space tradeoffs

– Hardness amplification in proof complexity

– Simulation of AC0 circuits by majority circuits

– Pseudo randomness

• Applications of Direct Sum results.
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