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ABSTRACT
We consider the problem of approximating the distance of
two d-dimensional vectors x and y in the data stream model.
In this model, the 2d coordinates are presented as a “stream”
of data in some arbitrary order, where each data item in-
cludes the index and value of some coordinate and a bit
that identifies the vector (x or y) to which it belongs. The
goal is to minimize the amount of memory needed to ap-
proximate the distance. For the case of Lp-distance with
p ∈ [1, 2], there are good approximation algorithms that run
in polylogarithmic space in d (here we assume that each co-
ordinate is an integer with O(log d) bits). Here we prove
that they do not exist for p > 2. In particular, we prove
an optimal approximation-space tradeoff of approximating
L∞ distance of two vectors. We show that any randomized
algorithm that approximates L∞ distance of two length d
vectors within factor of dδ requires Ω(d1−4δ) space. As a
consequence we show that for p > 2/(1− 4δ), any random-
ized algorithm that approximate Lp distance of two length

d vectors within a factor dδ requires Ω(d
1− 2

p
−4δ

) space.
The lower bound follows from a lower bound on the two-

party one-round communication complexity of this problem.
This lower bound is proved using a combination of informa-
tion theory and Fourier analysis.

1. INTRODUCTION
Many applications in science and commerce require the

processing of massive data sets, sets whose size alone im-
poses significant limitations on the way the data can be
stored and manipulated. The need to process such sets ef-
fectively gives rise to a variety of fundamental problems,
and several related theoretical models have been proposed
to capture these problems. Two of these models are the data
stream model and the sketch model.
In the data stream model we are trying to compute some
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function f(x1, . . . , xm). In this case, the data is the set
of m pairs, (i, xi) and the data arrives in some arbitrary
order. We assume that m is much larger than the memory
available, so we can not store all of the data as it arrives.
The problem is to minimize the amount of space needed to
compute f .
In the sketch model we are trying to compute some func-

tion f(x,y) of two vectors x, y stored at different sites. The
vectors are so long that it would be expensive to transmit
the whole vector. The problem is to find a sketch function g
and another function h s.t. h(g(x), g(y)) is a good approxi-
mation of f(x,y) and the size of the sketches g(x), g(y) is
significantly smaller.
Recently, various researchers have considered the prob-

lem of estimating the distance between two vectors in these
models, where the distance measure is the Lp-distance for

some p ≥ 1, i.e., ρp(x,y) =
�P

i(xi − yi)
p
� 1

p . Results
of Alon, Matias and Szegedy [1], Feigenbaum, Kannan,
Strauss, Viswanathan [6], Fong, Strauss [7] and Indyk [8]
show that for p ∈ [1, 2], there are algorithms (in both the
data stream and sketch models) which give approximation
factor arbitrarily close to 1 that run in space polylogarithmic
in d. To our knowledge, before the present paper nothing
was known for this problem for p > 2.
As observed by Alon, Matias and Szegedy [1], for any

function f(x,y) of two vectors, any protocol for f in either
the data stream or sketch models using space at most S
gives rise to a one round communication protocol using at
most S bits of communication.

Our results
We prove that any randomized one round communication
protocol that approximates L∞ distance of two length d vec-
tors within factor of dδ requires Ω(d1−4δ) communication.
As a consequence, we get that any randomized one round
communication protocol that approximates Lp distance for

p > 2/(1 − 4δ) within dδ requires Ω(d
1− 2

p
−4δ

) communica-
tion. By the above observation of Alon, et al., these com-
munication bounds translate into space bounds in the data
stream and sketch models. For p = ∞, this tradeoff is es-
sentially optimal, i.e., one can get a dδ approximation with

communication Ω̃|(d1− 2
p
−4δ

) communication. To do this, di-
vide x and y into t = d1−4δ vectors xj,yj (1 ≤ j ≤ t) of
length d4δ and use the L2 algorithm to estimate the L2 dis-
tance between each xj ,yj. Since aj = dδρ2(x

j ,yj) is within
factor of dδ of ρ∞(xj ,yj), we can take our approximation
to be maxj aj .
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Our proof proceeds as follows. We do a few transfor-
mations of the problem in order to get it in a more con-
venient form. First, we consider a decision version of the
problem where the problem is to distinguish between in-
stances where the L∞ distance is less than d or greater than
d1+2δ (and we don’t care about instances whose distance
is in between). A communication lower bound on this deci-
sion problem carries over to the approximation problem. We
consider this problem in the distributional model: we select
a probability distribution over inputs and prove a commu-
nication lower bound on any deterministic algorithm that
solves the problem on most instances. By Yao’s lemma, this
implies the same lower bound on randomized complexity.
We also transform the domain of the problem from Z

d to
the d-dimensional torus Zdn (for some appropriate n).
Observe that the (partial) decision function we are inves-

tigating can be written in the form F = ∨di=1gi, where gi is
the corresponding one-dimensional function on coordinate i.
We give a new approach to proving distributional communi-
cation lower bounds for (partial) functions of this form. We
select a distribution µ on (x, y) by selecting a distribution
ν on pairs of integers (x, y) and taking µ to be the product
of d copies of ν. We show that for this distribution, if Π
is a communication protocol that computes F with small
error, then for most i, Π also computes gi in the following
relaxed sense: when gi = 1 the protocol makes very small
error, and when gi = 0, the protocol is correct with non-
negligible fraction of the time. On the other hand, we show
that if the total communication is small, then for most i the
amount of information transmitted about the pair (xi, yi) is
so small that even such a relaxed requirement can not be
met. Since coordinates are chosen independently, this state-
ment has a strong intuitive appeal. However, this intuition
is misleading. Indeed, there is a subtle but significant diffi-
culty introduced by the (unavoidable) fact that for each i,
xi and yi are not chosen independently. To overcome this
difficulty requires a rather involved argument combining in-
formation theory and Fourier analysis. At this point, our
proof only works for the case of one round communication
protocols, which is enough for the data stream model lower
bounds. However, our approach is in principle applicable to
general communication lower bounds.

Related work
For the frequency moment problem in the data stream model,
Alon, Matias and Szegedy [1] obtained results similar to
ours. The frequency moment problem is essentially equiva-
lent to the following problem: given k integer vectors y1,
. . . , yk each of length d, estimate the Lp norm of their
sum. Here the coordinates of the vectors are assumed to
be of size at most polynomial in d. Although no explicit
approximation-space tradeoff was given in [1], analyzing the
argument in the paper gives that any algorithm that esti-
mates L∞ norm of vector sum within a factor better than
dδ requires space Ω(d1−10δ). Their results are proved by
reducing the problem to a k-party communication problem.
While the form of their bound is similar to ours, the re-

sults are incomparable. Their bounds hold even in the case
that the vectors are restricted to be nonnegative. Note that
in this special case, there is an efficient

√
k approximation

algorithm, since the maximum entry of all of the vectors
multiplied by

√
k is within a

√
k factor of the maximum en-

try of the sum, In particular when k = 2 there is a
√
2 factor

approximation requiring only logarithmic space.
In this framework, our result says that if we consider the

case k = 2, where the first vector is nonnegative and the
second is nonpositive then it is provably much harder to
estimate the maximum entry of the vector sum.
The lower bound in [1] is obtained from a lower bound on

a version of set-disjointness in the k-party communication
model. An easy reduction shows that this lower bound car-
ries over to a space lower bound in data stream model for
the frequency moment problem.
Independently of our work, Bar-Yossef, Jayram, Kumar

and Sivakumar [3] also proposed to use information theory
to study communication complexity problems in the one-
way and simultaneous communication models. In particular,
in the simultaneous communication model, they obtained
optimum lower bound for the multi-party set-disjointness
problem in [1] mentioned above. As this paper was going
to press, Bar-Yossef, Jayram, Kumar and Sivakumar [4] re-
ported that, after seeing a preliminary version of our paper,
they obtained optimum lower bound for the distance approx-
imation problem in the general communication complexity
model.
Our paper is organized as follows. In section 2, we review

the model, give a precise formulation of the problem, and
give some mathematical tools. In section 3, we present the
general framework of our lower bound technique and use it to
give a non-trivial lower bound for set-disjointness problem.
In section 4, we present the main result. In section 5, we
prove the main technical lemma used in section 4. In section
6, we present a reduction from the lower bound for toroidal
L∞ distance to usual L∞ distance.

2. PRELIMINARIES

2.1 Communication complexity
We briefly review the two party communication model,

and refer the reader to [9] for details. Two parties, referred
to as Alice and Bob, each begin with an input; Alice has
x ∈ S1 and Bob has y ∈ S2. They alternately send messages
to each other about their inputs. A k-round determinis-
tic communication protocol Π specifies a function from the
pair (x, y) to a sequence Π(x, y) = (a1, b1, a2, b2, . . . , ak, bk).
Each ai and bi is a binary string called a message, and
a1, a2, . . . , ak are the messages sent by Alice and b1, b2, . . . , bk
are the messages sent by Bob. Each successive message de-
pends on the input of the sender and the previous messages.
The sequence Π(x, y) is called the transcript of Π on input
(x, y). For j ≤ 2k we write Πj(x, y) for the subsequence of
Π(x, y) consisting of the first j messages; such a subsequence
is called a partial transcript of length j. Trans(Π) denotes
the set of all transcripts, and Trans∗(Π) is the set of partial
transcripts of all lengths. If σ, τ are partial transcripts we
write σ ≺ τ if σ is a prefix of τ .
The last message bk of the transcript τ is regarded as the

output of the protocol and is denoted OUT(τ). Thus the out-
put of the protocol on input x, y is obtained by applying Π
followed by OUT; we denote this composition by OUT[Π]. The
function OUT[Π] on domain S1×S2 is the function computed
by Π.
For a partial transcript τ , Π−1(τ) denotes {(x, y) : τ ≺

Π(x, y)}. We have the following fundamental fact (See, for
example, Lemma 1.16 of [9]):
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Lemma 2.1. For any τ ∈ Trans∗(Π), Π−1(τ) is a prod-
uct set in S1 × S2.

We may therefore define Π−1
A (τ) ⊂ S1 and Π−1

B (τ) ⊆ S2

so that Π−1(τ) = Π−1
A (τ)× Π−1

B (τ).
In a randomized protocol, Alice (resp. Bob) generates

an auxiliary string of rA (resp. rB) of random bits and
Alice’s (resp. Bob’s) messages may depend on rA (resp.
rB). The transcript Π(x, y) is then a random variable and
the output OUT[Π] is a random function which maps S1×S2

to a distribution over output values.
The cost of a deterministic (resp. randomized) protocol

Π on input (x, y) is the number of bits (resp., maximum
number of bits) in the transcript Π(x, y). The complexity
of Π is the maximum over inputs (x, y) of the cost of Π on
(x, y).
A problem specification with output domain T is a func-

tion f that maps each (x, y) ∈ S1×S2 to a nonempty subset
of T . f(x, y) is the set of acceptable outputs on input (x, y).
In the case that T = {0, 1}, we say that f defines a deci-
sion problem. For decision problems, we view f as a (partial)
function from S1×S2 to {0, 1, ∗} instead of {{0}, {1}, {0, 1}}.
We say that a randomized protocol ε-computes f if on every
input (x, y) the probability that OUT[Π](x, y) �∈ f(x, y) is at
most ε. RCCε(f) denotes the minimum complexity of any
randomized protocol that ε-computes f . Define ROCCε(f)
to be the minimum complexity of any randomized one-round
protocol that ε-computes f .
Much of this paper is focused on distributional commu-

nication complexity. Let µ be a probability distribution on
S1 ×S2. We write µ(x, y) for the probability that µ assigns
to the pair (x, y). We denote random variables by capi-
tal letters, e.g. (X,Y ) denotes a random input pair chosen
according to µ. Associated with a k-round protocol are ran-
dom variables A1, B1, . . . , Ak, Bk where Ai and Bi are the
messages sent by Alice and Bob in the round i.
Let Π be a deterministic communication protocol. Then µ

induces a probability distribution on the transcript Π(X,Y )
as well as on the output OUT[Π](X,Y ). We say that Π
ε-computes f relative to µ if for (X,Y ) selected accord-
ing to µ the probability that OUT[Π](x, y) �∈ f(x, y) is at
most ε. The distributional complexity of f with respect to
µ, DCCµ

ε (f), is the minimum communication complexity of
any deterministic protocol that ε-computes f relative to µ.
We also define DOCCµ

ε (f), to be the minimum communica-
tion complexity of any deterministic one-round protocol that
ε-computes f relative to µ. The following well known lemma
of Yao[13] connects distributional complexity and random-
ized complexity:

Lemma 2.2. For any probability distribution µ on S1×S2,
DCCµ

ε (f) ≤ RCCε(f) and DOCCµ
ε (f) ≤ ROCCε(f).

In this paper we will prove lower bounds on distributional
communication complexity, and the above lemma shows that
the same bounds apply to randomized communication com-
plexity.
In the case that the output set of f is {0, 1}, we need a

more refined measure of the quality of a deterministic pro-
tocol Π relative to distribution µ. We say that Π (ε0, ε1)-
computes f relative to µ if Pr µ[Π(X,Y ) = 1|f(X,Y ) = 0] ≤
ε0 and Pr µ[Π(X,Y ) = 0|f(X,Y ) = 1] ≤ ε1. Trivially, we
have:

Proposition 2.3. If a deterministic protocolΠ ε-computes
a boolean function f relative to µ, then Π (ε0, ε1)-computes f
where ε0 = ε/Pr µ[f(X,Y ) = 0] and ε1 = ε/Pr µ[f(X,Y ) =
1].

For τ ∈ Trans∗(Π), we need to understand how condi-
tioning on the event τ ≺ Π(X,Y ) changes the distribution
of (X,Y ). Let ατ ∈ {0, 1}S1 be the characteristic vector
of the set Π−1

A (τ), and βτ ∈ {0, 1}S2 be the characteris-
tic vector of Π−1

B (τ). Applying the definition of conditional
probability and Lemma 2.1 immediately gives:

Lemma 2.4. Let µ be a distribution on S1 × S2 and Π a
communication protocol and let τ ∈ Trans∗(Π), and let µ′

be the distribution µ conditioned on the event τ ≺ Π(X,Y ).
Then (1) for (x, y) ∈ S1 × S2, µ′(x, y) = ατ(x)µ(x, y)
βτ(y)/µ(Π−1(τ)), and (2) if µ is a product distribution (so
that X,Y are independent) then so is µ′.

2.2 Distance problems
Throughout this paper, d and n are positive integers. If S

is a set, we denote elements of Sd in bold: x = (x1, . . . , xd).

For i ∈ [d], Sd\i denotes the set of partial vectors that are

undefined in position i. An element of Sd\i is denoted by
superscripting with i, e.g., yi. If x ∈ Sd and i ∈ [d] then,

xi ∈ Sd\i is obtained by restricting x in the obvious way.
For p > 0, the Lp distance between x,y ∈ [n]d is defined as

ρp(x,y) =
�Pd

i=1 |xi − yi|p
� 1

p
. The L∞ distance between

x,y is defined as ρ∞(x,y) = max1≤i≤d |xi − yi| and the
toroidal L∞ distance is ρ�(x,y) = max1≤i≤d ||xi − yi||n
where ||z||n = min(|z|,n− |z|) for z ∈ [−n, n].
We will prove lower bounds on the one-round communi-

cation complexity of the following problems whose input set
is Sd×Sd. Let n, d be positive integer and ρ be a metric on
[n]d and let K ≥ 1 and θL ≤ θU be positive constants.

The distance estimation problem(DEP) for (n, d, ρ,K) is
to estimate ρ(x,y) for x, y ∈ [n]d within a factor K . Thus,
the acceptable output for the protocol is a number z such
that ρ(x,y)/K ≤ z ≤ Kρ(x,y).

The distance threshold decision problem(DTDP) for
(n, d, ρ, θL, θU ) is to output 0 if ρ(x,y) ≤ θL, output 1 if
ρ(x,y) ≥ θU . For θL < ρ(x,y) < θU either 0 or 1 is accept-
able.
Suppose Π is any randomized communication protocol

with domain S1 × S2 that outputs a real number, and w
is any real number, we define Π[w] to be the protocol that
runs Π and outputs 0 if the output of Π is less than w and
1 if the output of Π is greater than w.

Proposition 2.5. If Π solves DEP(n, d, ρ,K) with er-

ror probability at most ε and K <
p

θU/θL then Π[
√
θLθU ]

solves DTDP(n, d, ρ, θL, θU ) with error probability at most ε.

Combining this proposition and Lemma 2.2 we con-
clude that to prove a lower bound on the ε-error random-
ized complexity of DEP(n, d, ρ,K) it is enough to prove
a lower bound on the ε-error distributional complexity of
DTDP(n, d, ρ, θ,K2θ) relative to any distribution µ of our
choice, and for any θ of our choice.
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2.3 Technical preliminaries

Information theory
We review some elementary concepts from information the-
ory (see e.g., [5]). The setting for our discussion is that we
have a probability space and random variables on the space,
each of which takes values from a finite set. If X is such a
random variable taking values from S then its distribution
function p is a stochastic function on S. The entropy H(X)
of X is defined to be h(p). If A is an event, the conditional
entropy of X given A, H(X|A), is h(q) where q is the con-
ditional distribution function for X. For random variables
X,Y we define H(X|Y ) = H(X,Y )−H(X); this is equiva-
lent to H(X|Y ) =

P
t∈T H(X|Y = t)Prob(Y = t) where T

is the set of possible values of Y . The mutual information
between X,Y is defined as:

I(X : Y ) = H(X) +H(Y ) −H(X,Y )
= H(X)−H(X|Y ) = H(Y ) −H(Y |X).

For random variables X,Y,Z, the conditional mutual infor-
mation I(X : Y |Z) is defined as:

I(X : Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z).
The main technical fact about entropy is its subadditivity:

Lemma 2.6. For any random variables X1, . . . ,Xn,
H(X1, . . . , Xn) ≤

Pn
i=1 H(Xi).

This implies, in particular that H(X|Y ) ≤ H(X) for any
random variables X and Y .
The following simple facts are easily derived from the def-

initions or from subadditivity.

Lemma 2.7. Given four random variables X,Y, Z,W , we
have I(X : Y Z|W ) = I(X : Z|W ) + I(X : Y |ZW ).

Lemma 2.8. Given three random variables X,Y,Z, we
have I(X : Y |Z) = I(XZ : Y Z)−H(Z).

Lemma 2.9. Given three random variables X,Y,Z, we
have I(X : Y |Z) ≤ H(X).

Lemma 2.10. Given three random variables X,Y, Z and
a function f , we have I(X : f(Y )|Z) ≤ I(X : Y |Z).

Using these facts, it is easy to deduce:

Lemma 2.11. Let X = (X1, . . . ,Xd), Y, Z be random vari-
ables with X1, . . . ,Xn mutually independent conditioned on
Z. Then I(Y : X|Z) ≥

Pd
i=1 I(Y : Xi|Z).

Some inequalities
This section contains some elementary inequalities. We omit
the easy and routine proofs for lack of space.
If p is a nonnegative real valued function on the fi-

nite set S, we write p̄ for the average of p, and h(p) =P
s∈S p(s) log(1/p(s)) (log x always denotes the logarithm

base 2). Also, if T ⊆ S we write p(T) for
P

s∈T p(s). Note
that here we do not require that p(S) = 1; if p(S) = 1 we
say that p is a stochastic function.
The convexity of the function (1 + x) log(1 + x) implies:

Lemma 2.12. Let p be a nonnegative valued function on
the set S. Then:

h(p) ≤ |S|p̄(log 1/p̄)

In the case that p is a probability distribution, the right
hand side is just the entropy of the uniform distribution on
S. The quantity |S|p̄(log 1/p̄)−h(p) is the entropy deficiency
of p and is denoted h−(p). (Note that the definition of h−(p)
requires that the set S be clear.) We will derive some upper
and lower bounds on h−(p) in terms of p.
We have the following routine estimates of (1+x) log(1+

x). For x ≥ −1,

(1 + x)x

ln 2
≥ (1 + x) log(1 + x) ≥ x

ln 2
(1)

If δ ∈ [0, 1/2], then for x ≥ −1 and |x| ≥ δ:

(1 + x) log(1 + x) ≥ x

ln 2
+

δ2

4
(2)

If x ≥ 1 then:

(1 + x) log(1 + x) ≥ x

ln 2
+

x

4
(3)

From the upper bound in (1) we get:

Lemma 2.13. For any nonnegative valued function p on
set S,

h−(p) ≤ 1

p ln 2

X
s∈S

(p(s)− p̄)2

Using the lower bounds on (1 + x) log(1 + x) in (1), (2)
and (3) one can show:

Lemma 2.14. Let p be a nonnegative valued function on

set S. Let δ ∈ [0, 1/2]. Suppose that T ⊆ S satisfies | p(T )
|T | −

p̄| ≥ δp̄. Then h−(p) ≥ δ2|T |/(4|S|).

Lemma 2.15. Let p be a nonnegative valued function on

set S. Suppose that T ⊆ S satisfies p(T )
|T | ≥ 2p̄. Then

h−(p) ≥ p(T )/8.

Corollary 2.16. Let p be a stochastic function on set S

and let T ⊆ S. (1) If p(T )
|T | ≤

1
2|S| , then h−(p) ≥ |T |

16|S| . (2)

If p(T )
|T | ≥

2
|S| , then h−(p) ≥ p(T )

8
.

We also need another technical fact concerning the con-
vexity of certain functions on Rd.

Lemma 2.17. Let g, h be linear functions mapping Rd to
Rand let W be the subset of the domain where h is positive.

Then f = g2

h
is a convex function on W .

3. A NEW APPROACH TO COMMUNICA-
TION COMPLEXITY LOWER BOUNDS

3.1 The framework
Let S be a set and x = (x1, x2 . . . , xd), y = (y1, y2 . . . , yd)

vectors in Sd. Let g : S × S −→ {0, 1, ∗} be a partial func-
tion. We define g∨d(x, y) = ∨di=1gi(x, y) where gi(x,y) =
g(xi, yi). Here ∨di=1zi = 1 if zi = 1 for some i ∈ [d],
∨di=1zi = 0 if zi = 0 for all i ∈ [d] and ∨di=1zi = ∗ otherwise.
In this section we present a framework for proving lower
bounds on communication complexity for boolean functions
of the form g∨d.
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We begin by choosing the distribution µ on Sd × Sd.
We have two requirements for the distribution: (i) if we
write Wi = (Xi, Yi) then the distributions of W1, . . . ,Wd

should be mutually independent, and (ii) the probabilities
that g∨d = 1 and g∨d = 0 should be bounded away from
0 independent of d. To accomplish this we choose a distri-
bution ν on S × S so that Pr ν [g(X,Y ) = 1] = Θ(1/d) and
Pr ν [g(X,Y ) = 0] = 1− Θ(1/d); the second condition does
not follow from the first since we have to consider ∗ val-
ues for g. (There are other considerations in the choice of
ν which we will deal with later.) The product distribution
µ = νd on (S × S)d then satisfies (i) and (ii).
We now observe that if a deterministic protocol computes

f with small error, then for most i, it must output 1 on
almost all inputs for which gi = 1, and must output 0 on a
nontrivial fraction of inputs for which gi = 0.

Lemma 3.1. Let Π be a deterministic protocol that (ε, ε)-
computes g∨d = ∨di=1gi relative to µ. There exists some
I ⊆ [d] s.t. |I| > (1 − 2

√
ε)d and Π ( 3

4
, 2
√
ε)-computes gi

relative to µ for all i ∈ I.

Proof. Define the random variables T = Π(X,Y), Gi =
gi(X,Y) and G = g∨d(X,Y). First, we have

Pr [OUT(T) = 0|Gi = 0] ≥ Pr [OUT(T) = 0 ∧Gi = 0]
≥ Pr [OUT(T) = 0 ∧G = 0]
= Pr [OUT(T) = 0|G = 0]Pr [G = 0]
≥ (1− ε) 1

e
> 1

4

Let I ′ = {i ∈ [d] : Pr [OUT(T) = 0|Gi = 1] ≥ 2
√
ε}. We

want to show |I ′| < 2
√
εd. Suppose not, then we pick J ⊆ I ′

s.t. |J | = 2
√
εd and use the inclusion-exclusion inequality

to obtain

Pr [OUT(T) = 0 ∧G = 1]
≥ Pr [OUT(T) = 0 ∧ ∨i∈J(Gi = 1)]
= Pr [∨i∈J(OUT(T) = 0 ∧Gi = 1)]
≥
P

i∈J Pr [OUT(T) = 0 ∧ Gi = 1]
−
P

i,j∈J,i�=j Pr [OUT(T) = 0 ∧ (Gi = Gj = 1)]

≥
P

i∈J Pr [OUT(T) = 0 ∧ Gi = 1]
−
P

i,j∈J,i�=j Pr [(Gi = Gj = 1)]

≥ |J | 2
√
ε

d
−
�|J|

2

�
1
d2
≥ 2ε

Therefore, we obtain the following contradiction

Pr [OUT(T) = 0|G = 1] ≥ 2ε/(1− 1/e) > ε.

Themain part of the argument is based on the information
theoretic intuition that if the communication complexity is
small then on average the communication does not reveal
too much information about Xi, Yi therefore, for most i, the
algorithm will not be able to approximate gi even in the
weak sense given by the above lemma.

3.2 Lower bound for set-disjointness
As a warmup, let us use our framework to give a non-

trivial communication complexity lower bound for set-dis-
jointness problem. In the set-disjointness problem, we are
given two boolean vectors of length n, and we wish to de-
termine whether there is a coordinate where they are both
1. This problem was first studied by Babai, Frankl and Si-
mon [2] and they obtained a lower bound Ω(

√
n). Their

result was later improved to Ω(n) by Kalyanasundaram
and Schnitger [10] and a simplified proof was presented by
Razborov [12]. Here we illustrate our framework by proving
an Ω(

√
n) lower bound.

Partition the n-coordinates into d =
√
n blocks of

√
n bits

each, and restrict attention to boolean vectors that have
exactly one 1 in each block. We can represent such a vector
z by a vector x ∈ [d]d where xi indicates the position of the
1 within the i-th block of z. With this restriction the set-
disjointness problem becomes: evaluate f(x,y) = g∨d(x,y)
where for x, y ∈ [d], g(x, y) = 1 if x = y and 0 otherwise. We
will prove a lower bound on the distributional complexity of
this problem, for the distribution µ = νd, where ν is the
uniform distribution [d] × [d]. Throughout this section, let
S = [d] and f = ∨di=1gi where gi(x,y) = g(xi, yi).
Let X,Y be random variables chosen according to µ. Fix

a two-party protocol Π that takes input from [d]d × [d]d.
Let T denote the (random) transcript Π(X,Y). Clearly
the entropy H(T ) is a lower bound on the communication
complexity of Π. Using Lemmas 2.9 and 2.11:

Lemma 3.2. H(T) ≥ I(T : X,Y) ≥
Pd

i=1 I(T : Xi, Yi).

Our goal now is to show that if Π ε-computes f (on the
given distribution, for suitably small ε) then for most in-
dices i, I(T : Xi, Yi) is bounded below by a constant (which
will thus give an Ω(d) communication lower bound). By
Lemma 3.1 for most indices i, the protocol Π ( 3

4 , 2
√
ε) com-

putes gi. Therefore it is enough to give a lower bound on
I(T : Xi, Yi) for each such i. This is stated as the following
lemma.

Lemma 3.3. Let d > 5, i ∈ [d] and δ > 0. Suppose that
Π ( 3

4
, δ)-computes gi. If δ ≤ 1

80
, then I(T : Xi, Yi) ≥ 1

640
.

Proof. Let Gi be the random variable gi(X,Y ). Assume
Pr [OUT(T ) = 1|Gi = 0] ≤ 3

4
and Pr [OUT(T) = 0|Gi = 1] ≤ δ.

For λ > 0, define the set

Wλ = {τ ∈ Trans(Π) : H(Xi, Yi) −H(Xi, Yi|T = τ) ≥ λ}.

Notice that H(Xi, Yi)−H(Xi, Yi|T = τ) is nonnegative for
any τ since Xi and Yi are uniformly distributed. We have

I(T : Xi, Yi)
=

P
τ∈Trans(Π)(H(Xi, Yi) −H(Xi, Yi|T = τ))Pr [T = τ ]

≥
P

τ∈Wλ
(H(Xi, Yi)−H(Xi, Yi|T = τ))Pr [T = τ ]

≥ λPr [T ∈Wλ]

Our goal is to lower bound Pr [T ∈ Wλ] for a suitable con-
stant λ. We start with:

Claim 3.4. For any τ , if Pr [Xi = Yi|T = τ ] < 1
8d , τ ∈

W 1
64

.

Proof of Claim 3.4. By the second part of Lemma 2.4,
Xi, Yi conditioned on T = τ are independent. Thus,
H(Xi, Yi) − H(Xi, Yi|T = τ) = (log d − H(Xi|T = τ)) +
(log d−H(Yi|T = τ), where the two terms are nonnegative,
so it suffices to show that one of them is at least 1/64.
Let UX be the set of j ∈ [d] such that Pr [Xi = j|T =

τ ] ≤ 1/2d, and define UY analogously. If both |UX| and
|UY | are smaller than d/4, then there are d/2 indices j for
which Pr [Xi = Yi = j|T = τ ] ≥ 1

4d2
, which contradicts

the hypothesis that Pr [Xi = Yi|T = τ ] < 1
8d . So without
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loss of generality |UX| ≥ d/4. For j ∈ [d], define pj =
Pr [Xi = j|T = τ ]. Applying Lemma 2.14 with δ = 1

2
gives

log d −H(Xi|T = τ) ≥ 1
64
, to prove the claim.

For γ > 0, let Bγ = {τ ∈ OUT−1(0) : Pr [Xi = Yi|T = τ ] >
γ}. By the claim, W 1

64
⊆ OUT−1(0)− B 1

8d
, so it suffices to

lower bound Pr [OUT(T) = 0]− Pr [T ∈ B 1
8d
]. We have:

Pr [OUT(T) = 0] ≥ Pr [OUT(T) = 0|Gi = 0]Pr [Gi = 0]
≥ (1− 3

4 )
d−1
d > 1

5 ,

We upper bound Pr [T ∈ Bγ ] as follows.

δ ≥ Pr [Π(T) = 0|Gi = 1]
= dPr [OUT(T) = 0 ∧Gi = 1]
≥ d

P
τ∈Bγ

Pr [T = τ ]Pr [Xi = Yi|T = τ ]

≥ dγPr [T ∈ Bγ ].

Thus Pr [T ∈ B 1
8d
] ≤ 8δ, and so Pr [T ∈ W 1

64
] ≥ 1

5
− 8δ.

Choosing δ = 1
80 we obtain:

I(T : Xi, Yi) ≥
1

64
Pr [T ∈ W 1

64
] ≥ 1

640
.

Proposition 3.5. Any deterministic protocol that
( 1
1602 ,

1
1602 )-computes the set-disjointness problem must use

Ω(
√
n) bits.

Proof. Assume that Π ( 1
1602 ,

1
1602 )-computes the set-

disjointness problem. By Lemma 3.1, Π ( 3
4
, 1

80
)-computes gi

for at least 79
80d indices i ∈ [d]. By Lemma 3.3, I(Π(X,Y) :

Xi, Yi) ≥ 1
640 for all such i. By Lemma 3.2, H(Π(X,Y)) ≥

79
80

d 1
640

= Ω(
√
n).

4. SPACE LOWER BOUND FOR THE L∞

DTDP
For the rest of the paper, d and n are integers with n

prime and n ≥ 2d1+δ, where δ is a small positive constant
to be chosen. In this section and the next, we prove a
lower bound on the one-way communication complexity of
the DTDP (distance threshold decision problem) for vectors
in Zn

d under distance measure ρ� (recall that ρ�(x,y) =
max1≤i≤d ||xi − yi||n where ||z||n = min(|z|, n − |z|)) with
lower threshold d and upper threshold d1+δ. In section 6,
we use this lower bound to get a similar bound for the case
of ρ∞ distance.
We now recast this decision problem in the framework of

section 3.1. Let g : Zn ×Zn −→ {0, 1, ∗} s.t. g(x, y) = 0
whenever ||x− y||n ≤ d, g(x, y) = 1 whenever ||x − y||n ≥
d1+δ and g(x, y) = ∗ otherwise. Let f = g∨d = ∨di=1gi where
gi(x,y) = g(xi, yi). We seek a lower bound for the one-
round communication complexity of f for some distribution
µ. Following the outline in section 3.1, we want a product
distribution µ = νd where ν is a distribution on Zn ×Zn
that maps to pairs within distance d − 1 with probability
1−1/d and to pairs of distance at least d1+δ with probability
1/d. A natural choice for such distribution is the uniform
distribution over the set P = {(x, x + z) : x ∈Zn, z ∈ [d −
1]∪{d1+δ}}. If we select (Xi, Yi) with this distribution then
Xi and Yi are each uniform onZn but are not independent.

This seems unavoidable and complicates the proof. Indeed,
this complication will force us to restrict attention to one-
round protocols (although, we believe that it will eventually
be possible to remove this restriction.) Note that we do
have that if we define ∆i = Yi − Xi then Xi and ∆i are
independent and also Yi and ∆i are independent.
Let us see what goes wrong if we try to mimic the proof of

the set-disjointness lower bound to obtain a lower bound on
the communication complexity of f . Let Π be a protocol and
let T = Π(X,Y) be the transcript of the protocol. As in the
previous proof, we seek to lower bound H(T ), and we write

it as a sum
Pd

i=1 I(T : Xi, Yi). We want a counterpart to
Lemma 3.3, that says that if Π ( 3

4 , δ)-computes gi (for some
appropriate δ), then I(T : Xi, Yi) can not be too small.
As in the proof of Lemma 3.3, we can write I(T : Xi, Yi)

as a sum over transcripts τ of (H(Xi, Yi) − H(Xi, Yi|T =
τ))Pr [T = τ ]. Even though Xi, Yi are not independent it is
still true that the pair (Xi, Yi) is uniformly distributed over
its support and therefore (H(Xi, Yi) − H(Xi, Yi|T = τ)) is
always nonnegative. Defining Wλ as before, I(T : Xi, Yi) ≥
λPr [T ∈ Wλ]. Again, we would like to choose λ so that
for “most” i, λPr [T ∈ Wλ] is not too small (note that Wλ

depends implicitly on i). In the previous proof, we defined
Bγ = {τ ∈ Π−1(0) : Pr [gi = 1|T = τ ] > γ} and showed
that for γ = 1/8d, and λ = 1/64 (1) Pr [τ ∈ OUT−1(0) −
Bγ ] > 1/10 and (2) OUT−1(0) − Bγ ⊆ Wλ. Condition (1)
is still true. However, the proof of the second condition,
which relied heavily on the independence of Xi and Yi, falls
apart. Specifically, independence was needed for the claim
in Lemma 3.3 that says that if τ is a transcript and the
“entropy loss” H(Xi, Yi) − H(Xi, Yi|T = τ) is small then
Pr [gi(Xi, Yi) = 1|T = τ ] can not be much smaller than
Pr [gi(Xi, Yi) = 1] = 1/d. For this claim, we needed not only
that Xi and Yi are independent, but that Xi, Yi conditioned
on T = τ are still independent, and this fact followed from
the second part of Lemma 2.4.
Lacking independence we try to modify the claim by show-

ing: (i) For any transcript τ , the distribution ofXi, Yi condi-
tioned on T = τ is “nice” in some sense, and (ii) something
like the claim holds if we replace independence by “nice-
ness”. This line of thought led us to consider conditioning
not just on the value of T , but also on the value of Yi (Bob’s
input apart from Yi). We can then prove that the distri-
bution of Xi, Yi conditioned on (T = τ,Yi = yi) is nice in
some sense that enables us to prove something like the claim.
This enables us to prove an analog of Lemma 3.3 and thereby
show that for most indices i ∈ [d], I(T,Yi|Xi, Yi) is bounded
below by some constant. However, this does not finish the
proof because, while H(T ) ≥

P
i I(T |Xi, Yi), it is not the

case that H(T ) ≥
P

i I(T,Y
i|Xi, Yi). So we need to lower

bound H(T) in terms of
P

i I(T,Y
i|Xi, Yi). Intuitively, it

seems reasonable that I(T,Yi|Xi, Yi) should not be much
different than I(T |Xi, Yi) since I(T,Y

i|Xi, Yi) is the amount
of information that T,Yi reveal about Xi, Yi, and since Yi

is independent of (Xi, Yi) it should not affect things. How-
ever, this intuition is wrong. Suppose that T =

P
i Yi mod

n. Then (T,Yi) determines Yi, so I(T,Yi|Xi, Yi) = logn,
while I(T |Xi, Yi) = 0. Note also here that H(T) = logn,
which is factor 1/n of

P
i I(T,Y

i|Xi, Yi) = n logn. This
would seem to kill this approach, but it turns out that if
the transcript T only depends on X (i.e., consists only of
a message from Alice) then we can show that H(T) can’t
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be much smaller than
P

i I(T,Y
i|Xi, Yi). This argument

(which is the main technical result of the paper) is given in
Section 5.
This argument appears like it should give a lower bound

for 1-round protocols, but there is one remaining difficulty
in the above sketch. For a one-round protocol Π it is not
true that the transcript T depends only on X since it is of
the form (A,B) where A is the message from Alice and B is
the output declared by Bob. So we must further modify our
counterpart to Lemma 3.3 so that we condition only on the
values of A and Yi rather than T and Yi. More precisely,
we prove:

Lemma 4.1. Let d > 5, i ∈ [d] and δ > 0. Suppose that Π
is a one-round protocol that ( 3

4 , δ)-computes gi. If δ ≤ 1
800

I(A,Yi : Xi, Yi) ≥
1

6400
,

Proof. The transcript of the one-round protocol Π is
(A,B) where Bob’s message B is the output of the protocol.
Let Gi be the random variable gi(X,Y ). Assume Pr [B =
1|Gi = 0] ≤ 3

4 and Pr [B = 0|Gi = 1] = δ. We will show

that if δ ≤ 1/800 then I(A,Yi : Xi, Yi) ≥ 1/6400.

For a a possible message of Alice and yi ∈ [n]d\i, let
E(a, yi) denote the event that A = a and Yi = yi. For
λ > 0, define the set

Wλ = {(a,yi) : H(Xi, Yi) −H(Xi, Yi|E(a, yi)) ≥ λ}

By a computation analogous to that in the proof of Lemma 3.3:

I(A,Yi : Xi, Yi) ≥ λPr [(A,Yi) ∈ Wλ]. (4)

For γ, γ′ > 0, define

Vγ = {(a, yi) : Pr [B = 0|E(a, yi)] ≥ γ}
Uγ′ = {(a, yi) : Pr [B = 0|(Gi = 1) ∧E(a, yi)]} ≤ γ′.

For suitable parameters γ, γ′, and λ, we will show Vγ ∩
Uγ′ ⊆ Wλ and give a lower bound Pr [(A,Yi) ∈ Vγ ∩ Uγ′ ].
Together with (4) this will give a lower bound on I(A,Yi :
Xi, Yi). We proceed by a sequence of claims.

Claim 4.2. Pr [(A,Yi) ∈ V1/10] ≥ 1
10

.

Proof of Claim 4.2. We have Pr [B = 0] ≥ 1/5 by the same
derivation as in the proof of Lemma 3.3 (with B replacing
OUT(T).) Now

Pr [B = 0] ≤ Pr [(B = 0) ∧ ((A,Yi) ∈ Vγ)]
+Pr [(B = 0) ∧ ((A,Yi) �∈ Vγ)]

≤ Pr [(A,Yi) ∈ Vγ ]
+Pr [B = 0|(A,Yi) �∈ Vγ ]

≤ Pr [(A,Yi) ∈ Vγ ] + γ,

from which the claim follows immediately.
For the next two claims, we fix a pair (a, yi). By defi-

nition, (Xi, Yi) has uniform distribution ν over the nd ele-
ment set P = {(x, y) ∈Znd : y − x ∈ [d− 1] ∪ {d1+δ}}. Let
ν′(x, y) = Pr [(Xi, Yi) = (x, y)|E(a,yi)]. We can view ν′ as
a distribution on P . The condition (a, yi) ∈ Wλ says that
the entropy deficiency h−(ν′) ≥ λ.

Claim 4.3. There is a stochastic function q on [n] such
that ν′(x, y) = nν(x, y)q(x).

Proof of Claim 4.3. For x ∈ [n], let R(a, x) be the set

of xi ∈ [n]d\i such that on input (Xi,Xi) = (xi, x), Alice
sends a. Then:

ν′(x, y) = Pr [((Xi,Yi)=(x,y))∧(A=a)∧(Yi=yi)]
Pr [(A=a)∧(Yi=yi)]

= Pr [((Xi,Yi)=(x,y))∧(Xi∈R(a,x))∧(Yi=yi)]

Pr [(A=a)∧(Yi=yi)]

= Pr [(Xi,Yi)=(x,y)]Pr [(Xi∈R(a,x))∧(Yi=yi)]

Pr [(A=a)∧(Yi=yi)]

= ν(x, y)nq(x),

where q(x) = Pr [(Xi∈R(a,x))∧(Yi=yi )]

nPr [(A=a)∧(Yi=yi )]
depends on x, a and

yi but not on y. The crucial line in the above derivation is
the third, where we use the independence of (Xi, Yi) with
respect to (Xi, Y i). Finally, ν being uniform on P and ν′

being stochastic implies that q is stochastic.
It follows from this claim, and the definition of h−(·) that

h−(ν′) = h−(q).

Claim 4.4. If (a,yi) ∈ V 1
10
∩ U 1

40
then (a,yi) ∈W 1

320
.

Proof of Claim 4.4. Assume that Pr [B = 0|E(a,yi)] ≥
1/10 and Pr [B = 0|E(a,yi) ∧ Gi + 1] ≤ 1

40
. We need to

show h−(ν′) ≥ 1/320.
When conditioned on E(a, yi), B only depends on Yi. Let

L = L(a, yi) be the set of y ∈ [n] which cause B = 0 under
this conditioning, and let P (L) = {(x, y) ∈ P : y ∈ L}, so
|P (L)| = d|L|. Then Pr [B = 0|E(a,yi)] = ν′(P (L)). If
|L| ≤ n/20, then ν′(P (L))/|P (L)| ≥ 2/|P | and the second
part of Corollary 2.16 implies h−(ν′) ≥ 1/80.
So assume |L| > n/20. Let L′ = {x : ∃y ∈ L, s.t.y − x =

d1+δ}. Notice that

Pr [B = 0 ∧Gi = 1|E(a,yi)]

= ν′({(x, y) ∈ P : y ∈ L, y − x = d1+δ}) = q(L′)
d

.

Then:

Pr [B = 0|E(a, yi) ∧ (Gi = 1)]

= Pr [B=0∧(Gi=1)|E(a,yi )]

Pr [Gi=1|E(a,yi )]

= q(L′)/d
1/d = q(L′)

which means that q(L′) ≤ 1/40. Since |L′| = |L| > n/20,
the first part of corollary 2.16, implies that h−(ν′) = h−(q) >
1/320, to complete the proof of the claim.

Claim 4.5. For γ′ > 0, Pr [(A,Yi) �∈ Uγ′ ] ≤ Pr [B=0|Gi=1]
γ′ .

Proof of Claim 4.5.

Pr [B = 0|Gi = 1]
≥ Pr [(A,Yi) �∈ Vγ′ |Gi = 1]
·Pr [B = 0|(Gi = 1) ∧ ((A,Yi) �∈ Vγ′ )]

≥ Pr [(A,Yi) �∈ Vγ′ ]γ′,

where the last inequality uses the independence of (A,Yi)
and Gi, and the definition of Vγ′ . This proves the claim.
Taking γ′ = 1

40
in the claim, we have that if Pr [B =

0|Gi = 1] ≤ 1
800

, then Pr [(A,Yi) �∈ U 1
40
] ≤ 1

20
. By Claim 4.2

Pr [(A,Yi) ∈ V1/10 ∩ U1/40] ≥ 1/20. By Claim 4.4 this

is also a lower bound on Pr [(A,Yi) ∈ W1/320 ]. By (4),

I(A,Yi : Xi, Yi) ≥ 1
6400 .

Next, we want a counterpart to Lemma 3.2, which will
lower bound H(C) in terms of

P
i I(A,Yi : Xi, Yi). As

indicated earlier, unlike Lemma 3.2, this does not seem to
follow easily from elementary properties of entropy.
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Lemma 4.6 (Main lemma). Let A be first round com-
munication that only depends on X and µ is the distribution
over (X,Y) as defined earlier in this section. Then

1

d

dX
i=1

I(A,Yi : Xi, Yi) = O(
n2

d3
(H(A) + log d+ logn))

This is the key technical result of the paper. We give the
proof in the next section.
Comparing the upper bound and lower bound implied by

Lemma 4.1 and Lemma 4.6, We obtain

Theorem 4.7. Let δ < 1
2
, n ≥ 100d1+δ , d3

n2 � log d. Any

one-round protocol Π that ( 1
16002 ,

1
16002 )-computes toroidal

L∞ distance threshold decision problem of two length d vec-

tors with θU/θL ≤ dδ must use Ω( d
3

n2 ) bits.

Proof. Assume that Π ( 1
16002 ,

1
16002 )-computes toroidal

L∞ distance threshold decision problem with threshold dδ.
By Lemma 3.1, Π ( 3

4 ,
1

800 )-computes gi for at least 799
800d

indices i ∈ [d]. By Lemma 4.1, I(A,Yi : Xi, Yi) ≥ 1
6400

for
all such i. By Lemma 4.6,

H(A) ≥ Ω(
d2

n2

799

800
d

1

6400
) − log d − logn = Ω(

d3

n2
).

5. THE PROOF OF THE LEMMA 4.6.
The goal is give a good upper bound on

P
i I(A,Yi :

Xi, Yi). We begin with:

Lemma 5.1.X
i

I(A,Yi : Xi, Yi) ≤
X
i

I(A : Yi|Yi) +H(A).

Proof. By Lemma 2.7, I(A,Yi : Xi, Yi) = I(Yi : Xi, Yi)+
I(A : Xi, Yi|Yi) = I(A : Xi, Yi|Yi) since Yi is independent
ofXi, Yi. Recall that ∆i = Yi−Xi. Then I(A : Xi, Yi|Yi) =
I(A : ∆i, Yi|Yi) by Lemma 2.10. Again by Lemma 2.7:X

i

I(A : ∆i, Yi|Yi) =
X
i

I(A : Yi|Yi) +
X
i

I(A : ∆i|Y)

Apply Lemma 2.11 to the second sum with Xi ← ∆i,
Y ← A and Z ← Y, to get:X

i

I(A : ∆i|Y) ≤ I(A : ∆|Y) ≤ H(A).

So it remains to upper bound
P

i I(A : Yi|Yi) in terms
of H(A). Here we need to have some additional definitions.

If φ : Sd −→ C , we define φi : Sd\i −→ C by φi(yi) =
1
|S|
P

yi∈S φ(y). For xi ∈ [n]d\i, the set Line(xi) = {z ∈
[n]d : zi = xi} is called the line determined by xi. For a a
possible value of A, let ga be the function on [n]d defined by
ga(y) = Pr [A = a|Y = y]. Note that Pr [A = a|Yi = yi] =
gia(y

i). By definition of mutual informationP
i I(A : Yi|Yi) =

P
i H(A|Yi) −H(A|Y)

=
P

a

P
i

P
y Pr [Y = y]ga(y) log ga(y)− gia(y

i) log gia(y
i)

Our goal is to get the following upper bound of the inner
double sum of the above for each value of a.P

i

P
y Pr [Y = y][ga(y) log ga(y) − gia(y

i) log gia(y
i)]

= O
�
n2

d2
Pr [A = a] log Pr [A = a]

�
Define Q(a) = {x ∈ [n]d : Π1(x,y) = a,∀y ∈ [n]d}.

Lemma 5.2. Let p = Pr [A = a]. If maxi,x∈[n]d |Q(a) ∩
Line(xi)| ≤ K where K ≥ 1, thenPd

i=1

P
y Pr [Y = y][ga(y) log ga(y)− gia(y

i) log gia(y
i)]

= O(Kn2

d2
p(log(1/p) + log d)).

Proof. Fix a and we simply write g for ga in this proof.
The proof of this lemma involves bounding the left hand
side by a quadratic function of g(y), which is then bounded
above using Fourier analysis. Fix i,X

y

Pr [Y = y][g(y) log g(y) − gi(yi) log gi(yi)]

=
1

nd−1

X
yi

1

n

X
yi

[g(y) log g(y) − gi(yi) log gi(yi)]

=
1

nd

X
yi ,gi(yi)<p/d

X
yi

[g(y) log g(y) − gi(yi) log gi(yi)]

+
1

nd

X
yi ,gi(yi)≥p/d

X
yi

[g(y) log g(y) − gi(yi) log gi(yi)]

By Lemma 2.12, the first sum is bounded by

1

nd

X
yi ,gi(yi)<p/d

X
yi

[g(y) log g(y) − gi(yi) log gi(yi)]

≤ 1

nd−1

X
yi ,gi(y)<p/d

gi(yi) log(1/gi(yi)) ≤ p

d
log

d

p

We will use Fourier analysis to upper bound the second
sum. The appendix contains needed definitions and a lemma.
Let the Fourier expansion of g be g(x) =

P
α bg(α)ωα·x. We

split the above sum into two parts g(x) = g1(x) + g2(x),
where g1(x) contains all the terms where weight |α| is less
than (2 log(1/p) + log d) 2n2

d2
and g2(x) contains all the high

weight terms.
Using Lemma 2.13, the second sum is bounded by

1

nd

X
yi ,gi(yi)≥p/d

X
yi

[g(y) log g(y) − gi(yi) log gi(yi)]

≤ 1

nd

X
yi ,gi(yi)≥p/d

2

gi(yi)

X
yi

(g(y) − gi(yi))2

≤ 1

nd

X
yi ,gi(y)≥p/d

2

gi(yi)

X
yi

2(g1(y)− gi1(y
i))2

+
1

nd

X
yi,gi(yi)≥p/d

2

gi(yi)

X
yi

2(g2(y)− gi2(y
i))2

Let f be the characteristic function of Q(a). Clearly, one
may observe that g is a convolution of f with averaging func-
tion ΛD defined in the appendix with D = {−1, . . . ,−(d−
1),−d1+δ}. For the heavy weight part corresponding to

g2(x), we use the fact bg(α) = nd bf(α)bΛ(α) and the bound
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over nd|bΛ(α)| given by Lemma A.1 with s = d to obtainP
i

1
nd

P
yi ,gi(yi)≥p/d

2
gi(yi)

P
yi
2(g2(y)− gi2(y

i))2

≤
P

i
2
nd

P
yi ,gi(yi)≥p/d

d
p

P
yi
2(g2(y)− gi2(y

i))2

≤
P

i
4
nd

P
yi

d
p

P
yi
(g2(y)− gi2(y

i))2

=
P

i
4
nd

P
yi

d
p

P
yi
(g2(y))

2 − (gi2(y
i))2

= 4d
p

P
α,|α|≥(2 log 1/p+log d) 2n2

d2
|α||bg(α)|2

≤ 4d
p

P
α,|α|≥(2 log 1/p+log d) 2n2

d2
|α||bf(α)|2e− |α|d2

2n2

≤ 4d
p
(2 log 1/p+ log d) 2n2

d2
p2

d

P
α | bf(α)|2

= 8n2

d2
p2(2 log 1/p+ log d)

Before doing analysis on low weight part, we argue that
most of L2 norm of f is in the high weight terms.
According to assumption, f i(xi) ≤ K/nwhenever f i(xi) >

0, we have

||f i||22 ≤
K

n
||f ||22

for each i. If we sum over all i, we obtain

X
α

(d− |α|)|bf(α)|2 = dX
i=1

||f i||22 =
dK

n
||f ||22

This implies

||f1(X)||22 ≤
X

α≤d/2

| bf(α)|2 ≤ 2K

n
||f ||22

i.e. L2 norm of f1(x) is small.
To get a bound for the low weight part, we use Lemma 2.17

and the fact g1 is also a convolution of functions f1 and ΛD.
We havePd

i=1
1
nd

P
yi ,gi(yi)≥p/d

2
gi(yi)

P
yi
2(g1(y)− gi1(y

i))2

≤
Pd

i=1
1
nd

P
yi ,gi(yi)�=0

2
gi(yi)

P
yi
2(g1(y)− gi1(y

i))2

≤
Pd

i=1
1
nd

P
xi ,fi(xi)�=0

2
fi(xi)

P
xi
2(f1(x)− f i1(x

i))2

≤
Pd

i=1
1
nd

P
xi 2n

P
xi
2(f1(x)− f i1(x

i))2

= 4n
Pd

i=1
1
nd

P
x(f1(x))

2 − (f i1(x
i))2

= 4n
P

α,|α|≤(2 log(1/p)+log d) 2n2
d2
|α|| bf(α)|2

= (4n)(2 log(1/p) + log d) 2n2

d2
||f1||22

≤ (4n)(2 log(1/p) + log d) 2n2

d2
2K
n
||f ||22

≤ O(Kn2

d2
p(log(1/p) + log d)

Summarizing the bounds we have obtains, we have:

• The first sum is bounded by p
d
log d

p
= p

d
(log 1

p
+ log d)

• The heavy weight part of the second sum is bounded

by 8n2

d2
p2(2 log 1/p+ log d)

• The light weight part of the second sum is bounded by

O(Kn2

d2
p(log(1/p) + log d)).

Therefore, the whole thing is bounded byO(Kn2

d2
p(log(1/p)+

log d)).

Suppose now that K is an upper bound on maxa |Q(a) ∩
Line(xi)|. Then using Lemma 5.2:

Pd
i=1 I(A : Yi|Yi)
=
P

a

P
i

P
y Pr [Y = y]

·(ga(y) log ga(y) − gia(y
i) log gia(y

i))

=
P

a O(n
2

d2
Pr [A = a](log(1/Pr [A = a]) + log d))

= O(Kn2

d2
(H(A) + log d)).

If K is a constant, the lemma is proved. Otherwise, we
can apply the above with A replaced by A′ = (A,

Pd
i=1 Xi

(mod n)), which has K = 1. Since H(A′) = H(A) + logn,
this completes the proof of Lemma 4.6.

6. FROM THE TORUS TO THE INTEGER
LATTICE

We have now proved the lower bound we wanted, but for
the distance ρ� rather than ρ∞. We now prove a lower
bound for latter distance by reducing the approximation
problem for the former to it.
Let T = Zn

d be d-dimensional torus. Let i = 1, . . . , d,
n = γd1+δ with γ to be determined later. Let the distribu-
tion µ = νd on [n]d × [n]d be defined as in Section 4. Let
||x||n = min(|x|, n− |x|) for x ∈ [−n, n]. Let B = �n

2
�. We

define a map P from the torus T =Zn
d to integer lattice L =

[B]d s.t. P (x1, x2, . . . , xd) = (||x1||n, ||x2||n, . . . , ||xd||n).
Let g : [n] × [n] −→ {0, 1, ∗} and eg : [B]× [B] −→ {0, 1, ∗}

s.t.

g(x, y) =

8<
:

1 if ||x− y||n ≥ d1+δ

0 if ||x− y||n ≤ d
∗ otherwise

and

eg(x, y) =
8<
:

1 if |x− y| ≥ d1+δ

0 if |x− y| ≤ d
∗ otherwise

Let f = ∨ni=1gi : [n]
d × [n]d −→ {0, 1, ∗} where gi(x,y) =

g(xi, yi). Let ef = ∨ni=1egi : [B]d × [B]d −→ {0, 1, ∗} whereegi(x,y) = eg(xi, yi).
Let eν be the distribution on [B]× [B] induced by ν and map
|| · ||n, and let eµ = eνd. We want to show that if a one-round

protocol eΠ does well on ef , it induces a one-round protocol
that does well on f . we first show that under distribution

µ, ef(P (·), P (·)) is a good approximation of f(·, ·).

Lemma 6.1. Let f, ef, P be defined as above and n = γd1+δ

Then Pr µ[ ef(P (X), P (Y)) �= 0 ∧ f(X,Y) = 0] = 0 and

Pr µ[ ef(P (X), P (Y)) �= 1 ∧ f(X,Y) = 1] ≤ 2
γ .

Proof. Clearly ||·||n is a metric and satisfies the triangu-
lar inequality |||x||n−||y||n| ≤ ||x− y||n. Thus f(X,Y) = 0
implies

|||Xi||n − ||Yi||n| ≤ ||Xi − Yi||n ≤ d, ∀i,

i.e. ef(P (X), P (Y)) = 0. Therefore Pr µ[ ef(P (X), P (Y)) �=
0 ∧ f(X,Y) = 0] = 0.
Now we want to analyze the case when f(X,Y) = 1 butef(P (X), P (Y)) �= 1. In this case, there must be some i ∈

[d] s.t ||Xi − Yi||n = d1+δ but |||Xi||n − ||Yi||n| < d1+δ .
On the other hand, ||Xi − Yi||n �= |||Xi||n − ||Yi||n| implies
||Xi||n+ ||Yi||n = ||Xi−Yi||n = d1+δ . This can only happen
when ||Xi||n ≤ d1+δ + d.
Let Bi denote the event that gi(Xi, Yi) = 1∧eg(Xi, Yi) �= 1.

Certainly,

Pr µ[Bi] ≤ Pr µ[Yi−Xi ≡ d1+δ(mod n)∧||Xi||n ≤ d1+δ] ≤ 2

γd
.
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Now we have

Pr µ( ef(P (X), P (Y)) �= 1∧f(X,Y) = 1) ≤
dX

i=1

Pr µ(Bi) ≤
2

γ
.

Lemma 6.1 combined with Theorem 4.7 implies

Theorem 6.2. Let δ < 1
2
. Any one-round protocol that

( 1
2×16002 ,

1
2×16002 )-computes ef with respect to eµ must use

Ω(d1−2δ) space.

The straightforward proof is omitted for lack of space.
This theorem also implies space lower bounds for approx-

imating Lp distance for p > 2.

Corollary 6.3. Any one-round protocol that approximates
L∞ distance of two length d vectors within factor of dδ re-
quires Ω(d1−4δ) space. For p > 2, Any one-round protocol
that approximates Lp distance of two length d vectors within

factor of dδ requires Ω(d1− 2
p−4δ) space.
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APPENDIX

A. FOURIER ANALYSIS
Let f be a function defined on [n]d where m is identified

with m(mod n) and n a prime. The Fourier expansion of f

is defined as f(x) =
P

α∈Zn
d
bf(α)ωα·x where ω = e

2πi
n andbf(α) = 1

nd

P
x∈[n]d f(x)ωα·x.

Let f i be the average of f over the ith coordinate, we have

f i(xi) =
1

n

X
y,yi=xi

f(y) =
X

α∈Zn
d,αi=0

bf(α)ωα·x.

Therefore,

bf i(α) = � bf(α) if αi = 0
0 otherwise

Let h = f ∗ g the convolution of f and g s.t. h(x) =P
y∈[n]d f(x− y)g(y). Then bh(α) = nd bf(α)bg(α).
The Fourier transform satisfies the Parseval identityX

α∈Zn
d

��� bf(α)���2 = nd
X

x∈[n]d

|f(x)|2

Let S be a subset of [n] of size s and ΛS the function that
defines averaging over Sd ∈ [n]d as

ΛS(x) =

�
1
sd if x ∈ Sd

0 otherwise

We have the following estimate of bΛS(α).

Lemma A.1. Let ΛS be the function defined above and
10 < s < n/6. We have

nd|bΛS(α)| ≤ e
− |α|s2

2n2

where |α| is the weight of α.

Proof. Let ω = e
2πi
n First, we observe that the maxi-

mum of ������
1

s

X
x∈T⊂[n]

ωx

������,
where T is any subset of [n] of size s, is achieved when T is
a set of s consecutive numbers. In that case, the value is������

1

s

X
0≤x<s

ωx

������ =
sin(πs/n)

s sin(π/n)
≤ e

− s2

2n2 .

The Fourier transformation gives

ndbΛS(α) =
P

x∈[n]d ΛS(x)ω
α·x

=
Qd

i=1
1
s

P
x∈S ωαix

=
Qd

i=1,αi �=0
1
s

P
y∈S(αi)

ωy

where S(αi) = {αix(mod n) : x ∈ S}. Therefore,

nd|bΛS(α)| =
dY

i=1
αi �=0

������
1

s

X
y∈S(αi)

ωy

������ ≤
dY

i=1
αi �=0

e
− s2

2n2 = e
− |α|s2

2n2
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