
Coding Theory 24 Aug, 2016

Problem Set 1

• Due Date: 12 Sep (Mon), 2016

• Turn in your problem sets electronically (LATEX, pdf or text file) by email. If you
submit handwritten solutions, start each problem on a fresh page.

• Collaboration is encouraged, but all writeups must be done individually and must
include names of all collaborators.

• Refering sources other than the text book and class notes is strongly discouraged.
But if you do use an external source (eg., other text books, lecture notes, or any ma-
terial available online), ACKNOWLEDGE all your sources (including collaborators)
in your writeup. This will not affect your grades. However, not acknowledging will
be treated as a serious case of academic dishonesty.

• The points for each problem are indicated on the side.

• Be clear in your writing.

• Problems 1,2,4,5 and 6 are from the book “Essential Coding Theory” (Guruswami,
Rudra and Sudan) while Problem 7 is due to Zeev Dvir.

1. (2+4+2+7) There are n people in a room, each of whom is given a black/white hat
chosen uniformly at random (and independent of the choices of all other people).
Each person can see the hat color of all other people, but not their own. Each person
is asked if they wish to guess their own hat color. They can either guess, or abstain.
Each person makes their choice without knowledge of what the other people are do-
ing. They either win collectively, or lose collectively. They win if all the people who
don’t abstain guess their hat color correctly and at least one person does not abstain.
They lose if all people abstain, or if some person guesses their color incorrectly. Your
goal below is to come up with a strategy that will allow the n people to win with
pretty high probability. We begin with a simple warmup:

(a) Argue that the n people can win with probability at least 1
2 .

Next we will see how one can really bump up the probability of success with
some careful modeling, and some knowledge of Hamming codes.

(b) Lets say that a directed graph G is a subgraph of the n-dimensional hypercube
if its vertex set is {0, 1}n and if u → v is an edge in G ,then u and v differ in at
most one coordinate. Let K(G) be the number of vertices of G with in-degree
at least one, and out-degree zero. Show that the probability of winning the hat
problem equals the maximum, over directed subgraphs G of the n-dimensional
hypercube, of K(G)/2n.

(c) Using the fact that the out-degree of any vertex is at most n, show that K(G)/2n

is at most n
n+1 for any directed subgraph G of the n-dimensional hypercube.
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(d) Show that if n = 2r − 1, then there exists a directed subgraph G of the n-
dimensional hypercube with K(G)/2n = n

n+1 .
Hint: This is where the Hamming code comes in

2. (1+2+3+4+5) In this problem you will need to come up with some ways of construct-
ing new codes from existing ones, and prove the following statements (recall that
[n, k, d]q stands for an block-length n linear code over Fq of dimension k):

(a) If there exists an [n, k, d]q code (d ≥ 2), then there also exists an [n − 1, k, d′ ≥
d− 1]q code.

(b) If there exists an [n, k, d]2 code with d odd, then there also exists an [n + 1, k, d +
1]2-code.

(c) If there exists an [n, k, d]q code, there there also exists an [n − d, k − 1, d′ ≥
dd/qe]qcode.
Hint: Drop the d positions corresponding to the support of a minimum weight
codeword.)

(d) If there exists an [n, k1, d1]q code and an [n, k2, d2]q code, then there also exists a
[2n, k1 + k2, min(2d1, d2)]q code.

(e) If there exists an [n, k, d]2 code (0 < d < n/2), then for every m ≥ 1, there also
exists an

[
nm, k, nm−(n−2d)m

2

]
2

code.

Hint: Given an n× k generator matrix G for the code, consider the nm × k gen-
erator matrix whose (i1, i2, . . . , im)th row is the sum of rows i1, i2, . . . , im of G .
It is also more slick to use a ±1 notation for binary alphabet via the transla-
tion b → (−1)b from {0, 1} to {1,−1} and track the bias Ei∈1,...,N [xi] of a string
x ∈ {−1, 1}N as a proxy for its relative Hamming weight.

3. (5+5+5) Given a (n1, k1, d1)q code C1 and a (n2, k2, d2)q code C2, the direct product of
C1 and C2, denoted C1 ⊗ C2, is an (n1n2, k1k2, d)q code constructed as follows. View
a message of C1 ⊗ C2 as a k2 by k1 matrix M. Encode each row of M by the code
C1 to obtain an k2 by n1 intermediary matrix. Encode each column of this interme-
diary matrix with the C2 code to get an n2 by n1 matrix representing the codeword
encoding M.

In this problem, we first show that the resulting code has distance at least d1d2 in
either case. Then we show that if C1 and C2 are linear, then the resulting code is also
linear, and furthermore is the same as the code that would be obtained by encoding
the columns with C2 first and then encoding the rows with C1.

(a) Prove that the distance of the code C1 ⊗ C2 is at least d1d2.

(b) Suppose C1 and C2 are linear codes. Let G1 ∈ F
n1×k1
q be a generator matrix for

the code C1 and G2 ∈ F
n2×k2
q be a generator matrix for the code C2. Show that

the direct product code C1 ⊗ C2 is a linear code that has as its codewords

{G2MGT
1 | M ∈ Fk2×k1

q }.
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Conclude that the code C1 ⊗ C2 is linear if C1 and C2 are. Also, that the same
code is obtained by encoding the columns with C2 first and then encoding the
rows in the intermediate matrix with C1.

(c) Suppose C1 and C2 are linear codes. Show that the code C1 ⊗ C2 is equivalent
to the following code whose codewords are all n2× n1 matrices whose rows are
codewords of C1 and columns are codewords of C2.

4. (7+7+1) In this exercise we will prove the following q-ary version of the Plotkin
bound via a purely combinatorial proof.

If C ⊆ [q]n is a code with distance d and if d >
(

1− 1
q

)
n, then |C| ≤ qd

qd−(q−1)n .

Given an (n, k, d)q code C with d >
(

1− 1
q

)
n, define

S = ∑
c1 6=c2∈C

∆(c1, c2).

For the rest of the problem, think of C as an |C| × n matrix where each row corre-
sponds to a codeword in C . Now consider the following:

(a) Looking at the contribution of each column in the matrix above , argue that

S ≤
(

1− 1
q

)
n|C|2.

(b) Looking at the contribution of the rows in the matrix above, argue that

S ≥ |C|(|C| − 1)d.

(c) Conclude the q-ary version of Plotkin’s bound.

5. (6+9) For integers 1 ≤ k ≤ n , call a (multi)set S ⊆ {0, 1}n to be k-wise independent
if for every 1 ≤ i1 < i2 < · · · < ik ≤ n and (a1, a2, . . . , ak) ∈ {0, 1}k,

Pr
x∈S

[xi1 = a1 ∧ xi2 = a2 ∧ · · · ∧ xik = ak] =
1
2k

where the probability is over an element x chosen uniformly at random from S .
Small sample spaces of k-wise independent sets are of fundamental importance in
derandomization. In this problem, you will see how codes can be used to construct
k-wise independent sets of near-optimal size.

(a) Prove that any linear code C whose dual C⊥ has distance d⊥ is (d⊥ − 1)-wise
independent.

(b) Using BCH codes and the previous part, show how one can construct a 2t -wise
independent subset of {0, 1}n of size at most (n + 1)t when n is of the form
2m − 1.
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(c) [Extra credit] Prove an almost matching lower bound, namely any k-wise inde-
pendent set S ⊆ {0, 1}n satisfies

|S| ≥
b k

2 c

∑
i=0

(
n
i

)
. (1)

Hint: Find a set of linearly independent vectors in R|S| of cardinality at least the
R.H.S of (??). Specifically, for T ⊆ {1, 2, . . . , n} of size ≤ bk/2c, consider the
〈χT(x)〉x∈S where χT(x) = (−1)∑i∈T xi .

6. (15) For this problem, consider the following problem:

Input Instance: A set S = {α1, . . . , αn} ⊆ F2m , an element β ∈ F2m , and an integer
1 ≤ k < n .

Question: Is there a nonempty subset T ⊆ {1, 2, . . . n} with |T| = k + 1 such that
∑i∈T αi = β.

[Note: It can be shown that this problem is NP-hard via a reduction from subset
sum.]

Consider the [n, k, n− k + 1]2m Reed-Solomon code RSn,k,S over F2m obtained by eval-
uating polynomials of degree at most k − 1 at points in S. Define y ∈ (F2m)n as
follows: yi = αk+1

i − βαk
i for i = 1, 2, . . . , n.

Prove that there is a codeword of RSn,k,S at Hamming distance at most n− k− 1 from
y if and only if there is a set T as above of size k + 1 satisfying ∑i∈T αi = β.

This implies that finding the nearest codeword in a Reed-Solomon code over expo-
nentially large fields is NP-hard. (Proving this for polynomial sized fields remains
an embarrassing open question.)

7. (4+2+2+2) Let F be a finite field of size q. A Kakeya set in Fm is a set K ⊆ Fn such
that K contains a line in every direction. More precisely, K is a Kakeya set if for every
y ∈ Fm there exists a z ∈ Fm such that the line

Lz,y = {z + t · y|t ∈ F}

is contained in K.

A trivial upper bound on th size of K is qm and this can be improved to qm/2m−1. In
this problem, we will use the polynomial method to show a lower bound of qm/m!.
More precisely, we will show that

K ≥
(

q + m− 1
m

)
.

Suppose, for contradiction that this is not the case.

(a) Show that there exists a m-variate non-zero polynomial g of degree d ≤ q− 1
such that g(x) = 0 for all x ∈ K.
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Let gd be the homogenous part of degree d of g so that gd is non-zero and ho-
mogenous.
For any y ∈ Fm, we know that there exists a z ∈ Fm such that the line Lz,y is
contained in K. Consider the following univariate polynomial

Py,z(t) := g(z + t · y).

(b) Argue that Py,z is identically zero and hence the coefficient of td in Py,z(t) is zero.

(c) Show that the coefficient of td in Py,z(t) is exactly gd(y).

(d) Conclude that gd is identically zero, a contradiction.
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