Barrington's Theorem:
Ref: [Viola] Gems in TCS

Lecturer: Ramprasad Saphanishi Course: Complexity

Picture Hanging Problem o k-nails.

D Picture should not fall

- If any of the nails removed, then picture falls.

An abstraction for space bounded computation. (random access model).
Deft: (Branching Program): Layered graph

Length \quad Each layer is "pos ser
This $B P$ computes $f:\{0,1\}^{n} \rightarrow\{0,1\}$ if
$f(x)=1 \Leftrightarrow \exists$ "a path from s to accept"
Oblivious dot; $B P_{i}$: All vertices at a given layer read the same cuput bit.
Eg: AND: $\{0,1\}^{n} \rightarrow\{0,1\}$

PARITY:

MAJ: $\{0,1\}^{n} \rightarrow\{0,1\} \quad 1$ if $\geqslant n / 2$ bits are 1 .
With 3, exp length.
(Try out every ($\left.\begin{array}{l}n \\ n / 2\end{array}\right)$ subset, and do AND on each).
On: Car MAJ be computed by BPs of $O(1)$ with, and length poly (n) ?
[Barrington] Yes. With 5. For any fur that can be computed in $N C^{1}$.
$N C^{1}$: functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$
that are computable by circuits of

$$
\begin{aligned}
& \triangleright \lambda, V, 7 \text { gales } \\
& \triangleright \text { depth }=O(\log n) \\
& \Rightarrow \text { fan-in }=2 \\
& \Rightarrow \text { size }=\text { poly }(n)
\end{aligned}
$$

Key idea: Group theory, commutators.
Group BP: seq of instructions of the $\left[i, g_{i_{0}}, g_{i_{1}}\right]$

$$
\left[7, \pi_{1}, \sigma_{1}\right]\left[14, \pi_{2}, \sigma_{2}\right]\left[7, \pi_{3}, \sigma_{3}\right] \ldots
$$

*Start with id. Read input i.
If $x_{i}=1$, multiply with $g_{i_{1}}$

$$
x_{i}=0, \quad " \quad g_{i}
$$

This G. BP α-computes a for $f_{0}:\{0,1\}^{n} \rightarrow\{0,1\}$
if $\quad \begin{aligned} \quad f(x)=0, \text { then final perm } & =\text { id. } \\ f(x)=1, " & =\alpha\end{aligned}$

$$
G=S_{5}
$$

Lemma 1: If we have aG.BP that α-computes f and α - any 5 -ace.
Then of β is any other 5-aycle, then we also have a G-BP that β-computes f of the same length.
$P f_{0}$ if α, β are both 5 -aycles, then $\exists \rho$ st

$$
\begin{array}{ll}
\rho^{+} \alpha^{\prime} \cdot \rho=\beta \\
\left(\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}\right) \\
\left(\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5}\right)
\end{array} \quad \quad \rho_{0} \alpha_{i} \rightarrow \beta_{i}
$$

Pre- \& post-multiply by P^{-1} \& P resp.
Corona: If we have a G-BP that α-computes f, then " " " " α-computes \bar{f}.

Pfo Multiply by α^{-1} at the end. This gives a G-BP that α^{-1} - computes \bar{f}. But $\alpha^{\alpha^{-1}}$ has same ape structure lee prev lemma.
Lemma: If we have a G.BP that α-computes f β-computes g
then there is a $G B P$ " $\alpha \beta \alpha^{-1} \beta^{-1}$-computes $f \wedge g$ of length ≤ 4. max. (length (f), length (g)).
Pto

f	g	
1	1	$\alpha \beta$
1	0	α
0	1	α
0	0	$i d$

$$
\begin{array}{|c|}
\alpha \\
\text { or id } \\
\hline \text { or id } \\
\hline
\end{array}
$$

D If either of them $=i d, \quad$ outpuct:id
D If both are non-triv, then output to be non-triv.

	f	g		
	11	α	β	
10	α	$\beta_{i d}$	$\alpha \beta \alpha^{-1} \beta^{-1}$	
01	$i d$	β	$\alpha^{-1}=i d$	
$i d \beta d \cdot \beta^{-1}=i d$				
00	$i d$	$i d$	$i d$.	

This is a G-BP that γ-computes $f \wedge g$ where $t=\alpha \beta \alpha^{-1} \beta^{-1}$

Meaningful it $\alpha \beta \alpha^{-1} \beta^{+} \neq i d . \quad(\alpha \beta \neq \beta \alpha)$
Fact: $\quad(12345)(13542)(12345)^{\gamma}(13542)^{\gamma}$ $=(13254)$.

Cor: If f is computable by a circuit (fan-in 2) of depth d, then f is (12345)-comp. by a $G-B P$ of length 4_{4}^{d}

Want α, β, γ that are non-triv and
$D \alpha, \beta, \gamma$ are all conjugates of each other $\Rightarrow \gamma=\alpha \beta \alpha^{-1} \beta^{-1}$.
A_{5} = set of even permutations of 5 elements.
N^{1}
Circuit for MAJORITY:

Fact: Addition of two l-bit numbers can be done in $A C^{0} \subseteq N C^{1}$
(unbounded fan-in $N, V, \&$ I gates O(I) depth
poly size).

3-to-2 transformation:
Given 3 numbers a, b, c. of l-bits
Wort to output 2 numbers x, y of $\leq l+1$ bits
such that $a+b+c=x+y$.

addition without carry carry.

