Today

- \#P
- \#P-completeness
- Valiant's Theorem

Lecture 16 Computational Complexity
Instructor: Prahladh Harsha
(Permanent is \#P-complete)
\#P- Countrong Class.

$$
\left.f:\{0,1]^{*} \rightarrow \mathbb{N}\right\} \text {-complexity of such }
$$

eg: \#SAT: $\varphi \rightarrow$ \#sotistying assigmment-
\#ST: $G \longmapsto$ \#spanning trees of groph
Perm: M ($\omega /[0,1]$-entrices)
\longmapsto permanent (M)
\#Cycle: $G \longleftrightarrow$ \#cycles
\#Acrepting Patho: $(M, \omega) \longrightarrow$ \#accepting Non-determinist TM

Casy Class:
FP: fGFP if 7 a deterominestic poly trome $T M, M_{1}$ ". $\quad \forall x \in\{0,1\}^{*}$

$$
f(x)=M(x) \quad \text { (ie outpat of } M \text { is } x)
$$

\#P: (sharp- P_{-}number- P)
fG \#P if \exists a polynomial $p i$ a poly

$$
f(x)=\#\left\{\omega \in\{0,]^{T M} /(x) / M(x, \omega)=1\right.
$$

(1) Matrix-tree Theorem /Kirctroffs Thm.

G-undirected graph.

$$
\begin{aligned}
L(G) & =\frac{\left.\operatorname{Drag}^{(d e g}\right)-A d_{j}(G)}{} \\
& =\int d_{1} \cdot \\
& \cdot d_{2} /-\operatorname{Adj}(\sigma)
\end{aligned}
$$

\#spansing frees $(\sigma)=\operatorname{det}\left(L_{1,}\right)$
Corollaxy: (AST \in FP)
(2) \#perfect matchings in a planar graph.

Fisher-Kestelyn-Tempotley:
For every planar graph G, there exists a I-signing of the edges sach that
\#perfect matchings $=\sqrt{\text { det (sogned-matrix) }}$
(2)

Forthermone, this signing cam Ge obtaineq effrerently.
\#SAT, \# Hanniltonian Cyales \in \#F - don't Gelreve fhem to be in FD

- AP- natural detro

89) Networks:
G - undrected
every edge con farl w/prab $1 / 2$ Pr [Gis connected]

$$
=\frac{\text { Aspanning graphs ofG }}{2^{L E 1}}
$$

(2) Machine learming: Ffidden Karialle
Model

Atrdden Karables

Qbservalles
know: $P_{1} .$. Pm z observe the $\left.\mathrm{c}_{\mathrm{c}}\right]^{\prime}$
Estmate ${ }_{\text {The }}^{\text {(3) }}$ fidden Vars
le. $\quad \operatorname{Pr} \angle x_{1}=1, x_{2}=0, \ldots \quad x_{1}=1 / y_{1}=1, y_{2}=0, \ldots$

$$
g_{m}=17
$$

$$
-? ?
$$

$$
\begin{aligned}
\operatorname{Pr} \angle x_{1} & \left.=1 / y_{1}=11 y_{2}=1 \ldots y_{m}=1\right] \\
& =\frac{\text { Hst assign to } \varphi / x_{1}=1}{\text { \#sal assin to } \varphi} \quad \varphi=\varphi_{1} 1 \varphi_{2} \ldots \varphi_{n}
\end{aligned}
$$

ObS:
Decision problem is hard, two is counting.

- Remark:

Decision might he easy, yet counting might Ce fard.

The: If $A C Y C \angle E \in F P$, then $N P=P$ (directed)

Pf: Af $\# C Y C L E \in F P$, then Hamiltonian Cycle $\in P$

$$
\begin{aligned}
& \text { cycle } \\
& \text { of length r }
\end{aligned} \overbrace{}^{v_{2}}\left(2^{m}\right)^{r} \text {-cycles }
$$

$m=n \log n$

$$
\begin{aligned}
& \text { I cycle g length } \rightarrow\left(2^{m}\right)^{n} \text {-cycles } \\
& n^{n^{2}} \text {-cycles } .
\end{aligned}
$$

$\overline{\text { All cycles of loonth }} \underset{\leqslant n-1}{ } \rightarrow$ cycles $<n^{n^{2}}$
Conclusion: Counting can be much harder than decision.
$P P$. $\angle \in P P$ if I a polynomial tone $7 / 7$ 2 a poly p st

$$
\begin{aligned}
& x \in \angle \Leftrightarrow\left\{\sum^{2} \in \in\{0,1\}^{p(|x|)} \mid M(x, \omega)=1\right\} \\
&\left.\geqslant \frac{1}{2} \cdot 2^{p(|x|}\right)
\end{aligned}
$$

Lemma: $P P=P \Leftrightarrow H P=F P$.
Pf: (\leqslant) trial from deft
$\Leftrightarrow 1: P P-m o b$ of the count
"Alg compute mash \Rightarrow Alg that computes every bit"

Clam 1: For every 2 Mrs $M_{0}=M_{1}$, frore exists another MM in sit \#acc $(M, x)=$ ac path of moe M

$$
\not \operatorname{Aacc}(M, x)=\nexists \operatorname{acc}(M, x)+\operatorname{Hacr}(M, x) .
$$

$M / \subset M=Q_{n}$ input $x=(b, a)$
If $\sigma=0$, accept if $M(x, \omega)=1$
else accept of $M(x, \omega)=1$.

Claim: \forall constant N, \mathcal{F} a mp M $\forall x, \quad \nexists a c c(M, x)=N$

Alg A that computes mss of count - we can perform binary search (arsing above claims) to find the exact count.
\#P_ complete problems If there exists an all for HSAT
\exists an alg to every $f \in \notin P$
Pf: Coot-Levm Theorem (Redaction is parsimonous) le, the Asatistying assignments is preserved.
\#P completeness:
$f-$ \#P- complete

- (ij) fe\#P
-(ii) \#P-fard:

$$
\frac{\# P-\text { hard }}{\forall q \in A P}: g \in F P^{x}
$$

Thm: \#SAT is \#P complete
cinfact, for any NP-complete problem rra parrimonous redns, the correspondion counting prollem \#L-\#Pcomplete. [valiont? \#P-complete

$$
\begin{aligned}
& A=\left(A_{i j}\right)_{c j=1}^{n} \\
& \operatorname{per}(A)=\sum_{\sigma \in S_{n}}^{n} \prod_{c=1}^{n} A_{i}, \sigma(i) \\
& (\text { Clike } \operatorname{det}(A) \text { Gut w/o }(-1) \operatorname{bign}(\sigma))
\end{aligned}
$$

Combinatorial Kiews of Permanent:
(1) A - adjacency matrix of a. Gportite

$$
\begin{aligned}
& A=L[\square(\bar{a}, r) \in E \\
& \text { (} \angle, \text { R, E) } \\
& |\angle|=|R|=n
\end{aligned}
$$

per (A) $=$ \# pertect matetriogs.
Cor Hperfect matk hings in brpartite graph AP-complete
(2) \# Cycle Covers:

Directed groph
Cycle Cover = idispoint union of cyckes that covers all vertices.

2cycle covers.
A - ady matrix of a drected grophf $\operatorname{per}(A)=\#$ cycle covers of σ.

Werghted graph C-cycle corex $C=G \ldots G$

$$
\omega t(c)=\prod_{\substack{e \in c_{i} \\ \varepsilon_{i} \in e^{2}}}^{\text {N } \omega t(e)}
$$

\#cycle cover ($O)=\sum_{C \text { arcle }} \operatorname{wt}(C)$

Valiant The:
Redo BCNF \rightarrow Graph (directed)

$$
\begin{aligned}
& \varphi \longmapsto G_{\varphi} \\
& M \cdot \# s a t(\varphi)=\text { Acycle cover }\left(\sigma_{\phi}\right) \\
& \varphi=\left(x_{1} \vee x_{g} \vee \overline{x_{8}}\right)\left(x_{1} \vee \ldots\right)
\end{aligned}
$$

Assumption: We cull assume for each var x_{i}, x_{i} appears an equal number of tones positive fy $=$ negatively.
(by adding ($\left.x_{c} \vee x_{c} \vee \overline{x_{i}}\right)$ or $\left(\bar{x}_{c} \vee \bar{x}_{i} \vee x_{i}\right)$)
Reduction:
Variable Gadget
x_{c}

Clause Gadget.

$$
C=\left(\begin{array}{llll}
1 & V l_{2} & \checkmark l_{3}
\end{array}\right)
$$

σ_{c} - seven cycle covers corresponding to seven sat Vosges (9)

