Today
\#P-completerness
Valiants Theorem:
Permanent is \#P-complete
Downward Self-Reducrbility
Toda's Theorem: $P H \subseteq P^{\nrightarrow P}$

Lectare 17:
Computatonal
Complexity instructer:

Prahladh Horsha

Recall
\#P-completeness.

$$
f i g \in \# P \quad f \leq \leqslant_{p} g
$$

One attempt: fe Fpl (relaxed defo)
Wou atternpt. (otricter detm)

Clse the more relaxed detr
Permanent is \#P-complete lander relaxed dets)
Valiants Theorem: Permanent of $E 0,1$-matrices 1s \#P complete.

Pf: Step 1: Permanent of $[50,1,-1]$-matrices (1) \# P-complete

Reduce from \#SAT
$\varphi \longmapsto \sigma_{\varphi}$ (werghts $0,1,-1$)
$(-2)^{3 m / 2}$

$$
\begin{array}{r}
n / 2 \operatorname{HSAT}(\phi)=\quad \text { Cycle-Cover }\left(\sigma_{\varphi}\right) \\
m=\text { Holacises of } \varphi .)
\end{array}
$$ Perm $\left(\operatorname{Aog}\left(\sigma_{\phi}\right)\right)$

C-Cycle Cover
G.

Covers all vertices verfex-disjoint cycles)

$$
\operatorname{val}(e)=\prod_{e \in e}
$$

Tefal cycle (G)

$$
=\sum_{C-c y c k \text { cover }} \operatorname{val}(e)
$$

specified by σ
Asoumption: Every varialle literals postively as negafively. add $(x \vee \bar{x} \vee \bar{x})$ or $(x \vee x \vee \bar{x})$

Redn 3 ingredents
(1) Variable Cadget

x

$$
\text { Eeven }=3 m
$$

(2)

 For every batrotyrng
absignment to There is a cycle cover st val I that mvolves
exartly those liferals
that are talsified.

Where 18 no cyele-covex involung the 3 outer Cedge. And these are a/l the cycle covers.

Lonsustent Goke Guver: One in which the Claube i rariable gaagets ore
comsistent on th

$$
\text { flonsistent crale covers }=\text { HGAT(P) }
$$

(There could be losconsistent cyole covers)
(3) cquality sadget

(3)

uv 2 wis' are Goth foten
\rightarrow Eyck cover with wal -1 (that moles setfloop
ur a rail' are Goth not token
\rightarrow ? Gxale covers w/ val leach

$$
\left(x_{x}^{x y} x_{2} \text { or } x^{x}>2\right.
$$

\#Consistent Cycle Covers $=(-1)^{p}(2)^{9}$ \#SAT((φ)
$p=\#$ positive literals
$q=\#$ negative literals

$$
=(-x)^{3 m / 2} \cdot \nRightarrow \operatorname{SAT}(\varphi)
$$

Tor every inconsistent setting
there is an ssvolution mapping cyck covers of wal w to rall-cu

$$
\begin{aligned}
\sum_{\substack{c-c y c l e \\
\text { Cover }}} \operatorname{val}(e) & =\sum_{\substack{e-\text { conns } \\
\text { ci le }}} \operatorname{val}(e)+\sum_{c-\text { incan }} \operatorname{val}(e) \\
& =(-2)^{3 m / 2} \cdot \nexists \operatorname{SAT}(\varphi)+0 . \\
& =(-2)^{3 m / 2} \cdot \nexists \operatorname{SAT}(\varphi) .
\end{aligned}
$$

Completes Step 1.
Step 2: Reduce perm of integer-valued matrices perm of non-negative-mteger raked

$$
\begin{aligned}
& \left.M=\max _{C_{j}}\langle | M_{i j} \mid\right\} \\
& \text { perm }(M)^{\prime} \leqslant 2 n!M^{n}=: Q \cdot\left[\begin{array}{c}
n-\operatorname{given} \operatorname{lin} \\
n=\operatorname{dim}(M)
\end{array}\right] \\
& M^{\prime} . \quad M^{\prime}=0+M .
\end{aligned}
$$

$M^{\prime}: \quad M_{i j}^{\prime}=Q+M_{i j} \quad M^{\prime}$ - has non-negation $\operatorname{perm}(M)=\operatorname{perm}\left(M^{\prime}\right)(\bmod Q)^{\text {en }}$

Step 3: Reduce permanent of nom-negative integer valued matres
permanent of $[0,1]$ - integer valued
Che the char of perm as the toll cycle cover of a

$$
\begin{aligned}
& \text { C col wornegatre. } \\
& \text { ablogh. } \\
& \text { perm }(A o f, G)=\operatorname{perm}\left(A d y\left(T^{\prime}\right)\right) d
\end{aligned}
$$

(5)

Conclusion: Permanent is \#Pcomplete. (geven $\{0,1$-ralued matrices).

Permanent:

Mi. matrix toimed Gy deletron! row - cth colemn

$$
P_{\text {erm }}^{n \times n} 1 \in F^{\text {Perm }(n-1) \times(n-1)}
$$

2. Pandom Self Redurrbility

Permanent is hard on worst-case Permanent is hard on avergage.

Todas Theorem:
How powerfil is \#P?
Easiness: $\# P \in$ FPSPACE

$$
\text { Cre, } P^{\# P} \subseteq \operatorname{PSPACE}
$$

Hardness:

$$
\because N P \subseteq P^{\# P}
$$

What about PH?

Qiserve: $\# P=F P \Rightarrow P=N P \Rightarrow P=P H$ (this is not known to imply

$$
\left.P A \subseteq P^{\# P}\right)
$$

Todais Theorem: PH $\subseteq P^{\# P}$

Tomas Theorem

$$
\begin{aligned}
& \text { Part 1: } \quad P H \subseteq B P \text {. } \\
& \text { Part 2: } B P \cdot \oplus P \subseteq P^{\oplus P} \subseteq P^{\# P \cdot}\left\{\begin{array}{l}
\text { Bromgs } \\
\text { in randomized }
\end{array}\right. \\
& \text { classes } \\
& \text { though original } \\
& \text { "rim "randomness-tree" }
\end{aligned}
$$

Part 1: $P H \subseteq B P \cdot \oplus P$
Today: Simpler: $N P \subseteq B P \cdot \oplus P$)
oP: ? ?
\#P_ \#acc paths
NP- J acc path
$P P$ - m.s.b \#acc paths
HP- l.s.6 Macc paths
(f)P:
\exists a polytione TM $M=$ ply p sit

$$
x \in L \Leftrightarrow \#\left\{y \in\{0,\}^{p(\mid x 1)} / M(x, y)=1\right\}_{10 \text { odd }}
$$

eg: (f)SAT $={ }^{5} \rho / \rho$ has an odd At of satisfying assignments)
$\Theta S A T \in \Theta P$.
Valiant-Vazirani: Randomised redon from SAT to USAT
$\varphi \longmapsto \psi=\varphi \wedge h$

$$
\begin{aligned}
& \varphi \in S A T \Rightarrow \operatorname{Pr}_{h}\left[\varphi \wedge h \in U S A T_{y}\right] \geq \frac{1}{8 n} \\
& \varphi \notin S A T \Rightarrow P_{h}[\rho \cap h \in \text { USATN] }=1 \\
& \varphi \in S A T \Rightarrow h_{r}[\psi \in \oplus G S A T] \geqslant \frac{1}{8 n} . \\
& \varphi \notin S A T \Rightarrow \operatorname{Pr} \angle \psi \notin \oplus \text { (}+ \text { SAT } 7=1
\end{aligned}
$$

Want is the following: tm

$$
\begin{aligned}
& \varphi \in S A T \Rightarrow P_{R}[\psi \in \oplus S A T\rangle \geqslant 1-\frac{1}{2^{m}} \\
& \varphi \notin S A T \Rightarrow P_{R}[\psi \notin \oplus S A T\rangle=1 .
\end{aligned}
$$

(Prove $N P \subseteq B P \cdot \notin P$)

