Today
Todas Theorem: PH $\subseteq P^{\# P}$
Lecture 18: Computational Complexity
Part $1: \quad P H \subseteq B P \oplus P$
(2Apr, 2020)
Part 2: $B P \oplus P \subseteq P^{\# P}$
Instructor: Prablaoth Marsha
Yoda: Theorem: $P H \subseteq P^{\# P}$

$$
\begin{array}{r}
\text { Part 1: } P H \subseteq B P \cdot \oplus P \quad \text { CValiant-Vapiran, } \\
=\underset{\text { Extensions }}{ }
\end{array}
$$

Part 2: $B P \cdot \Theta P \subseteq P^{\# P}$ C Modular Arithmetic Magic 7

Part 1: PH \quad BP. $\oplus P$
Theorem I: HR, the there is a probabilistic polynomial time reduction A that when green as copput an instance $\psi y J_{t}$-SAT (an alternating quantified Boolean formula storting w/ \bar{z} \& at most tit alternations of quantifiers) outputs an instance $A(\psi)$ of \uparrow SAT \&t?

$$
\begin{aligned}
& \psi \text { is true } \Rightarrow P_{A}[A(\psi) \in \oplus S A T] \geqslant 1-\frac{1}{2 m} \\
& \psi \text { is false } \Rightarrow P_{A}[A(\psi) \in \oplus S A T] \leqslant 1 / 2 m .
\end{aligned}
$$

Recall
$\Theta S A T=\{\rho / \varphi$ has an odd $t q$ sat

Notation: BP.C, G.C.
C- complexity class (eg: P)
(1) $\exists \cdot C=\sum^{5} \angle J L^{\prime} \in e^{\prime}$,

$$
\begin{aligned}
& \left.x \in L \Leftrightarrow \exists y,(x y) \in L^{\prime}\right\}
\end{aligned}
$$

$O G_{8}:$
(2)

$$
\begin{aligned}
\oplus \cdot P= & \left\{\angle L \exists L^{\prime} \in C\right. \\
x \in L \alpha \Rightarrow \nexists i & \\
& \left.\left.\mid(x, y) \in L^{\prime}\right\}=\text { odd }\right\}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& B P C=F \angle / \exists L^{\prime} \in C . \\
& x \in L \Rightarrow \#\left\{y(x, y) \in L^{\prime}\right\} \geqslant \frac{2}{3} \text {. \#y, } \\
& x \notin \angle \Rightarrow\left\{\{y /(x, y) \in C\} \leq \frac{1}{3} \cdot \nexists y^{\prime}\right\}
\end{aligned}
$$

Ohs:

$$
-\mathcal{B} P \cdot P=B P P
$$

$\frac{\text { Classes of frim : }}{B P \oplus \cdot B P \cdot \oplus \cdot P}$
Concise of writiong Thon I
Therrem I : VE, $\sum_{k}^{D} \subseteq B P \cdot \oplus P$ COperator Algebra]
Thm 1 in the flavour of Valcant-Kazirani

Thim [Valrant-Vazirani]
There exists a patyomial trme randomiged reduction A s.f $\&$ n-var Booteon fimulde f

$$
\begin{aligned}
& \varphi \in S A T \Rightarrow \operatorname{Pr}[f(\varphi) \in \text { OSAT }] \geqslant \frac{1}{8 n} \\
& \varphi \notin S A T \Rightarrow \operatorname{Pr}[f(\varphi) \in \text { OSAT}]=1
\end{aligned}
$$

Qpen: If $1 / 8$ n can le increased further in strint ($[\mathrm{CH}$ - inlikety)
lis an odd \# 20 is an even H. Thim [Valrant-Vazirani]
There exists a patynomial trme rondomiged reduction A bif t n-var Bosteon frimula f

$$
\begin{aligned}
& \varphi \in S A T \Rightarrow \operatorname{Pr}[f(\varphi) \in \oplus S A T] \geqslant \frac{1}{8 n} \\
& \varphi \notin S A T \Rightarrow \operatorname{Pr}[f(\varphi) \notin \oplus S A T]=1
\end{aligned}
$$

Now, we can insrease $\frac{1}{8^{n}} \rightarrow 1-\frac{1}{2^{m}}$ for m of our choice.

Aritfmetic witf \&SSAT fimalae:
$\underset{x}{\oplus} \varphi(x)$

$$
(7 x(y)
$$

$$
\begin{aligned}
& (\underset{x}{\oplus} \varphi(x)) \wedge(\underset{y}{f} \psi(y))=\underset{x, y}{+}(\varphi(x) \wedge \psi(y)) \\
& \text { (} \oplus P \text { ro } x, y \text { cosed conder } 1 \text {) } \\
& 7(\underset{x}{(f)} \varphi(x))=\underset{x}{\oplus}((\varphi+1)(x)) \begin{array}{c}
\text { (} \rightarrow \text { P is } \\
\text { closed under } \\
\text { complementor or }
\end{array} \\
& (\varphi+1)(x)= \begin{cases}\varphi(x) & \text { if } x \neq 0^{n} \\
1-\varphi(x) & \text { if } x=0^{n}\end{cases}
\end{aligned}
$$

Hence, it is also chosed unoler V

$$
\left.\left({ }_{x} \neq \varphi(x)\right) \vee \underset{y}{(\oplus+} \psi(y)\right)=\underset{x, y}{f}((\varphi+1)(x) \cdot(\psi+1)(y)+1)
$$

Run the V.V redon on $4 / \rho p-R$ trones to get $\% / \ldots$ K

$$
\begin{aligned}
& \varphi \in S A T \Rightarrow \operatorname{Pr} \quad\left(\exists_{c} \cdot L \in A R, \psi_{e} \in \oplus S A T\right] \geqslant 1-\left(\frac{-1}{8 n}\right) \\
& \varphi \notin S A T \Rightarrow P_{r}\left[\exists c \in(B), \psi_{l} \in \Theta S A T\right]=0
\end{aligned}
$$

Fi; $\psi_{c} \in \oplus S A T \longrightarrow \underset{x}{\nrightarrow} \psi \in \notin S A T$
Choose $R=O(m n)$

$$
\begin{aligned}
& \varphi \in S A T \Rightarrow \operatorname{Pr}<\psi \in \oplus S A T \quad J \geqslant 1-\frac{1}{2^{m}} \\
& \varphi \notin S A T \Rightarrow P r<\psi \in \oplus S A T \quad J=0
\end{aligned}
$$

When written in terms of EVSAT (mstead O (SAT), the conc(asion of VV can
be strengthened (re, the error probabilth can be reduced arbitrarily).
This proves Thin 1 to the case of NP ND
How do we extend it to all J-SAT.
Idea: (1) By induction on k.
(2) Valiont-Vazreani \& "oblivious

What do wont for $\beta=2$.
$k=1 \quad J x \varphi(x)$
$k=2 \quad J x+y \varphi(x, y) \xrightarrow{A_{2}} \psi$

$$
\begin{aligned}
& \exists x \forall y \varphi(x, y) \Rightarrow P \rho \psi \in \oplus S A T] \geqslant 1-\frac{1}{2 m} \\
& \forall x \exists y \varphi(x, y) \Rightarrow P<\psi \in \oplus S A T] \leqslant \frac{1}{2 m}
\end{aligned}
$$

$$
\psi(x)=\varphi(x) \wedge(h(x)=1)
$$

The [Val,ant-Vazirani] Oflwious version
There exists a polynomial time randomized reduction A if on 1^{7}, outputs a Boolean formula $r(x, y)$ where x is n-vars s y is a new set of vars. sit Boolean
for $\beta:\{0,1]^{2} \rightarrow[0,1\}$

$$
\begin{aligned}
& \mathcal{J} \beta(x) \Rightarrow \operatorname{Pr}\langle(f)(\beta(x) \wedge r(x, y))] \geqslant \frac{1}{8 n} \\
& \forall \beta(x) \Rightarrow \operatorname{Pr}\left\langle\frac{f}{x, y}(\beta(x) \wedge r(x, y))\right]=0 .
\end{aligned}
$$

Proof of Theorem I:
$\exists x \psi(x) \quad \psi(x)-(k-1)$ quantifiers.
By induction hypothesis.
there is a randomized redon
that maps to each x

$$
\psi(x) \sim \beta(x)=\nrightarrow \rho(x, 2)
$$

is equivalent ${ }^{2} 60 \psi(x)$ w
Oblinous VV will fell you prob $\geqslant 1-\frac{1}{2 m+1}$ frat

$$
\beta(x) \wedge r(x, y) \in \mathbb{C} \text { SAT } \omega / \rho
$$

(6) if $\beta(x)^{\text {Bin }}$ \& frae.

Ron OGlivious VV $R=O$ (mon) tomes

$$
\begin{aligned}
& \alpha={\underset{j=1}{R}(\beta(x) \wedge z(x, y)), ~(z)}^{R}(\beta) \\
& J x \psi(x) \Rightarrow P / \alpha \in \oplus S A T] \geqslant C-\left(\left(1-\frac{1}{S_{n}}\right)^{R}\right. \\
& \left(\alpha \text { is on } \begin{array}{c}
v \cot \text { converfod }(\in)
\end{array} \in\right)\left[\frac{1}{2^{m+1}}\right] \\
& \nexists x \psi(x) \Rightarrow B / \alpha \in \oplus S A T] \leqslant 0+\frac{1}{2^{m+1}} \\
& R=O(m, n)-\left(1-\frac{1}{8 n}\right)^{R}=\frac{1}{2^{m+1}}
\end{aligned}
$$

Hence $\frac{1}{2^{m+1}}+\frac{1}{2^{m+1}}=\frac{1}{2^{m}}$-regd erra.

