Today (Pot 4 out)

- Approximate Counting
- Interactive Proot/3
- Graph Non-isomorphism

Lecture 20:
Computational Complexity
(14, Apr, 2020)
Instructor: Prafladh
Marsha
Approximate Counting
Thu: $\& f \in \# P$, there s on algorithm that on input $x, \varepsilon=\delta$ outputs $A(x)$ it

$$
P_{A}[((-\varepsilon) f(x) \leqslant A(x) \leqslant(1+\varepsilon) f(x)] \geqslant 1-\delta
$$

in tine poly $\left(|x|, \frac{1}{\varepsilon}, \log \frac{1}{5}\right)$ using an NP crack cue SAT oracle)

Last time: Simplifying Quservatom,
I. Suffices to prove of $f=\# S A T$
2. Tuft to give an alg that yrelols the following weaker approximation

$$
\begin{array}{ll}
1 . \# S A T(\varphi) \leqslant A(\varphi) \leq C-H S A T(\varphi) & \text { for some } c \\
& \text { constom } C \geq 1 .
\end{array}
$$

3. If HSAT $(\rho)=O(1)$, this is promised then can compute \#SAT (ϕ) exactly in $P^{N D}$.

Consider the following gap problem

$$
a-\operatorname{comp}(\varphi, k)= \begin{cases}y E S \text { if } \# S A T(\varphi) \geqslant 2^{k+1} \\ \text { wo if } \# S A T(\phi) & \leqslant 2^{k} \\ \text { Dort care othercurse }\end{cases}
$$

Cos a-comp to obtain 2-approx.
$A: \theta_{n}$ input φ

$$
\begin{align*}
& \text { input } \varphi(\varphi, 0), \\
& a-\operatorname{comp}(\varphi, 1) \\
& a-\operatorname{comp}(\varphi, 2) \\
& a-\operatorname{comp}(\varphi, 2) \\
& \vdots \\
& a-\operatorname{comp}(\varphi, n)
\end{align*}
$$

If ans is No, then use NP orack to figure out $\# S A T(\rho)$ exactly
else, suppose ans is YES of $t=0, \ldots$.. 1

$$
\text { output } 2^{i} \text {. No } i \text { on cards }
$$

Suppose a-comp op yES (C, i-1)... (a)

$$
=\text { No on }(\varphi, i) \ldots(\sigma)
$$

$\left.\begin{array}{l}(a) \Rightarrow \operatorname{HSAT}(\varphi)>2^{i-1} \\ (b) \Rightarrow \operatorname{HAT}(\varphi)<2^{i+1}\end{array}\right\} \begin{aligned} & \text { Hence the ans } \\ & 2^{i} \text { is a }\end{aligned}$
(b) \Rightarrow \#SAT $(\varphi)<2^{i+1} 2^{i}$ is a 2-approximaho.
Hence, buff to design an all of an imp.

Constracting a-comp:
logredient: Parruise Iondependent family
Comilar to Vahant Varrani redn)
Lemma [Leff-over hash Lemma]
Impagliazzo- Levin Luby.
Iff- le a family of p.w ind fash his.

$$
h:\{0,1]^{n} \rightarrow\{0,\}^{m} ; S \subseteq[0,1\}^{n}, 151 \geqslant \frac{4 \cdot 2^{m}}{\varepsilon^{2}}
$$

Recall.
If is p.w ind femily

$$
\begin{aligned}
& \forall x \neq, y \in\{0,1]^{n}=a, b \in\{0,1]^{m} \\
& P_{n}[h(x)=a \cap h(y)=b]=\frac{1}{2^{2 m}}
\end{aligned}
$$

(eg: $\begin{aligned}\left.h(x)=A x+b ; A \in[0,1]^{m \times n} ; b \in[a, 1]^{m}\right) \\ \text { (3) works }\end{aligned}$
a-comp: (uses a sAtiorack).
On input (φ, k)
(1). If $R \leqslant 5$, then use SAT-oracle to check if φ has at least 2^{k} bat assig if so, output YES else if NO.
(2) If $R \geq 6$

Pct $h:[0,1]^{n} \rightarrow[0,1]^{m}$ where $m=k-5$ from a pw. nd family cts.
2 alp YES if there are at least 48 satisfying assign to $\rho \& \sigma(a)=0$.
Proof of correctness:

- Case $:$ \#SAT $(\phi) \geqslant 2^{k+1}$

$$
S=\{a \mid \varphi(a)=1\} \quad|s| \geqslant 2^{k+1}
$$

$$
151>2^{k+1}=2^{n+6}=\frac{4 \cdot 2^{m}}{(1 / 4)^{2}}
$$

Now setting $\varepsilon=1 / 4$.

Hence, $\operatorname{Pr}[\mid[a+S \mid h(a)=0] \geqslant 48] \geqslant 3 / 4$

Case $\# S A T(\phi)=|s|<2^{k}$.

$$
s^{\prime} \geq s, \quad|s|=2^{k}
$$

$$
\begin{aligned}
& \left.\leq P| |\left(a \in S^{\prime} \mid h(a)=0\right\} \mid \geq 48\right] \\
& \left.\left.\leq P /\left|\sum^{\prime} a \in S^{\prime}\right| h(0)=0\right\}\left|-\frac{\mid 5^{\prime}}{2 n}\right|>\frac{15^{\prime}}{2 \cdot 2^{m}}\right] \\
& \leq 1 / 4 . \quad\left(\varepsilon=\frac{1}{2}\right)
\end{aligned}
$$

Proof of Leff Orer Hash Lemma:

$$
\begin{aligned}
& S=\left[a_{1} \ldots . a_{r}\right] \\
& X_{i}=\zeta_{1} \quad \text { if } h(a)=0 \\
& X=\sum X_{i} . \quad \mathbb{E} X_{i}=\frac{1}{2^{m}} ; \mathbb{E} x=\frac{r}{2^{m}} \\
& \operatorname{Pr}[|x-\mathbb{E} x| \geqslant \varepsilon \cdot \mathbb{E} x] \text {... gty to Ge. } \\
& \operatorname{Var}[X]=\sum_{i} \operatorname{Var}\left[x_{i}\right] \text { (parause } 10 d \text {) } \\
& =r \cdot\left(\mathbb{E}\left[x_{c}^{2}\right]-\left(\mathbb{E} x_{c} \cdot\right)^{2}\right] \\
& \leq r\left(\frac{1}{2^{m}}-\left(\frac{1}{2^{m}}\right)^{2}\right) \leq \frac{r}{2^{m}}
\end{aligned}
$$

Pob: $\quad P[|x-\mathbb{E} x| \geqslant E \mathbb{E} X] \leqslant \frac{\operatorname{Var}[x]}{E^{2}[E[x])^{2}}$

$$
\begin{aligned}
& \leq \frac{r / 2^{m}}{\varepsilon^{2}\left(r / 2^{m}\right)^{2}} \leqslant \frac{2^{m}}{\varepsilon^{2} \cdot r} \\
& \leq \frac{1}{4} \quad\left(\sin c e \quad r \geq \frac{4 \cdot 2^{m}}{\varepsilon^{2}}\right)
\end{aligned}
$$

Interactive Proofs:

interaction
Does interaction increase the power?
Not really, the prover con give the transcript
However, not true if verifier is randomised.
Example
Graph Non-Isomorphism

$$
\begin{aligned}
& G N I=\left\{\left(G_{1}, G_{2}\right) / \sigma_{1} \not \neq G_{2}\right\} \\
& G I \in N P, G N I \in \operatorname{CONP}
\end{aligned}
$$

$$
\begin{aligned}
& V \sim\left(G_{0}, G_{1}\right) \sim p \\
& \text { 1. } b G_{R}\{0,1] \\
& \text { 2. } \sigma G_{R} S_{n} ; n=\left(N\left(C_{1}\right)\right) \\
& =\left(V\left(G_{0}\right)\right) \\
& \text { 3 } H=\sigma\left(G_{b}\right) \\
& \text { Accept if } b=C
\end{aligned}
$$

