Today

- Public Coins = Private Coins
- Probabilistically Checkable

Proofs (PCP) Complexity

* MID $=$ NEXT
* Proof Checking
* Approximation.

Lecture 24
Computational
(30 Apr, '20)
Instructor:
Prahladh Marsha

Public Coins Foteractive Proofs

$$
A M[\underbrace{k(n)}]
$$

Around

- Artificer Merlin Proof Systems

Arthur publicly reveals all the randomness in each round.
Properties:
(1) PSPACE \subseteq AM[POr]
(2) Goldwas.sex-Sipsex $\operatorname{IP}[E(\sigma)] \subseteq A M[R(\sigma)+2]$
(3) t constant R

$$
\text { (A) } A M[k] \subseteq A M[2]=A M
$$

Gr: GI: $N P$-complete $\Rightarrow P H=\sum_{2}{ }^{D}$.
AM, MA - Public Coins Interactive Proofs 2 rounds colfference - who speaks first)
AM:

S: $x \notin L$ Can n be moreosed to 1).

$$
A(x, x, m)
$$

$$
=\operatorname{arc} / r u j
$$

$$
\begin{aligned}
P_{r} / \operatorname{Fm} \cdot A(x, r, m) & =a c c \\
& \leqslant 1 / s
\end{aligned}
$$

MA.

(a)

$$
A(x, m, x)=\operatorname{acchicj}
$$

S: $\quad x \notin \angle$
$\forall m, \quad \operatorname{Pr}[-A(x, m, x)=a c c] \leqslant /{ }_{r}$
MA = NP except w/ a randomizer verrfét.
Round rede: MA (2) $\subseteq A M$. (AMLETSAM)

$$
\begin{aligned}
& \int \begin{array}{c}
C: x \in L \\
\|
\end{array} \\
& \exists \mathrm{m}, \\
& \begin{aligned}
\operatorname{Pr}[A(x, m, r) & =\operatorname{arc}] \\
& \geqslant 1 / 3
\end{aligned} \\
& (=1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { C: } x \in \angle \\
& \begin{aligned}
\operatorname{Pr}[\text { wm } A(x, r, m) & =a c c] \\
& \geqslant 2 / 3
\end{aligned} \\
& \geqslant 2 / 3
\end{aligned}
$$

Public Coins = Private Cons [Goldwasser-Spser]
Thin: IP $(t(\ln)] \subseteq A M[B(G)+2]$.
Special Lase: GNT S AM - protocol.
Recall private cams protocol for GNT

(v) \rightarrow

$\left(\sigma_{0}, \sigma_{1}\right)$

$$
S=\left\{H / H \cong G_{0} \text { or } H \cong G_{1}\right]
$$

Simplicity assume. Goth $\sigma_{0} \& \sigma_{\text {, }}$ have no automorphisms no relabeling of $\sigma_{0} 2 \sigma_{1}$ that 13 usomasphin

$$
\begin{array}{ll}
& \sigma_{0}=\sigma_{1} \text { that } \\
\sigma_{0} \not \equiv \sigma_{1} \quad \Rightarrow \quad|S|=2 n! \\
\sigma_{0} \cong \sigma_{1} \quad \Rightarrow|S| \quad 0=n!
\end{array}
$$

to Hoelf).

Remove the simplifying assumption.

$$
S=\left\{(H, \pi) / J G \in\{0,1\}, \quad H \cong \sigma_{b} 2\right.
$$

$$
\left.\begin{array}{l}
\sigma_{0} \not \approx \sigma_{1} \Rightarrow|S|=2 n! \\
\sigma_{0} \cong \sigma_{1} \Rightarrow|S|=n!
\end{array}\right\}
$$

Observations.
(1) Size of SH different m YES

Cinparticalor, large in YES case broil in NO case)
(2) Membership in S can Ce checked co/ a proof.

$$
\begin{aligned}
u= & \text { Grophs } \times S_{n} \\
& \text { on vertices } \\
& Y E S: \quad|S| \geqslant K \quad(K=2 n!) \\
& \text { No: }|S| \leq K / 2 . \quad
\end{aligned}
$$

Provers wants to convenes that Is is large ria a public cams protocol Idea: Sse parruibe independent hash functions

Set-Lower Bound Potocol
loput: m- $O=[0,1] m$
$S \leq\left[0,17^{n}\right.$ spectined implicitly using as NP oracle. (membership has shot certificate)
K.

Coal: Drstroquersh $\mid S 1 \geq k$

$$
|S| \leq k / 2 .
$$

$$
\begin{align*}
& k \text { s-f } \\
& 2^{k-2} \leq k \leq 2^{-k t} \\
& \text { "S", } k_{1} m \tag{M}
\end{align*}
$$

$$
\begin{equation*}
h=\{0,1\}^{m} \rightarrow\{0,1\}^{k} \tag{A}
\end{equation*}
$$

Arthar checks

$$
\leftarrow s, \pi \quad \begin{aligned}
& \sin d \\
& \text { an } s \in S \\
& \text { sf }
\end{aligned}
$$

$$
-h(s)=y \text {. }
$$

$$
\begin{aligned}
& h(s)=y \\
& 2 a \text { prod } \\
& \pi: s \in S^{\prime}
\end{aligned}
$$

Soundness: $|S| \leq k / 2$.

$$
P_{h, g}[J s, \in S, \quad h(s)=y] \leqslant \cdot f / 4:
$$

Pf. For every $h:\{0,1\}^{m} \rightarrow\{0,1]^{k}$

$$
\begin{aligned}
P_{r}[J s \in S, f(s) & =y] \leqslant \sum_{B \in S} \operatorname{Pr}[h(\theta)=\mathcal{y}] \\
& =1 S 1 / 2^{k} \leqslant \frac{K}{2 \cdot 2^{k}} \leqslant \frac{1}{4}
\end{aligned}
$$

Completeness:

$$
|S| \geqslant K
$$

$$
\operatorname{Pr}[\exists s \in S, h(s)=q] \geqslant
$$

Af: Pick $S^{A} \leq S \quad 15+1 /=k$
For every y.

$$
\begin{align*}
& \left.P_{r} \angle \exists s \in S, \quad R(s)=y\right] \\
& \left.\geqslant \sum_{s \in S} p_{n}<h(s)=q\right] \\
& \left.-\sum_{S, \delta^{\prime}} P P_{h} L f(s)=y=f\left(s^{\prime}\right)\right] \\
& =\frac{|S|}{2^{k}}-\binom{151}{2} \frac{1}{2^{2 k}} \geqslant \frac{3 p}{4}-\frac{p}{2^{k}} \\
& \beta=1 S^{*} / / 2^{k} . \tag{6}
\end{align*}
$$

Malt provers: MIP-malti-prover Interactive Proofs
Surprising Result
The [Babar Fortnow Lung MIP = NEXP

- Intact true even in the following settings
- 2 round protocols

- 2 provers are sufff

- The answers can be just a bit each. (8) (m this case we need 3 provers).
[LFEN, Shams, BF, RS, FS, BFL]]

$$
M I P=N E X P \quad \angle E N E X P
$$

P
(P)

$$
\begin{equation*}
P_{c^{-}}=\{q] \rightarrow\{a\} \tag{P}
\end{equation*}
$$

(2) R-paly $1 R=p d_{y}(x x)$

$$
V\left(x, R, b_{1}, b_{2}, b_{3}\right)=a c c / r e j ?
$$

View, the 3 provers as tables.

An: Can one scale the above to
(9) NP.

(10)

