Today

$$
-P C P_{B}
$$

* Introduction
* PCPs $=$ Inapproximabilit|instructor: Profladh Harsha
Recall: (from last time)

$$
M I P=N E X P
$$

PCP Theorem.
Recall classical defre of NP

$$
\angle \in N P
$$

LENP if Jo det polytione vertfer ${ }^{2}$
$x \in \angle \Rightarrow \exists \pi, \quad V(\cos \pi)=1$
$x \notin \angle \Rightarrow+\pi, \quad r(x, \pi)=0$

Key differeonces:
(i) Strengthen vercher def \rightarrow randomined
(2) Weaken vertrert
(1) Readiong proof entrat proof $m=9$
(1) Readiong proof entruct proof m $m=9$ lochu

Formal Defy of verifier.
Definition: $(r, 9, m, t a)$-restricted verifier $r, q, m, t, a: \mathbb{N} \rightarrow \mathbb{N}$
18 a prob $T M$ that on input and rack access to a proof. π lighten

- tosser at most $x(\sigma)$ random coins R
- queries the proof $\pi \mathrm{in}$ at most
$q(n)$ locations $(\pi /=m(n))$.
- runs in time $t(\sigma)$.
- computes a predicateD syne $a(n)$
- Accepts if the proof Gits it roads satisfies the predicate D.

$$
V(x, R) \rightarrow \underbrace{(Q}_{\text {\& locators }}, D)
$$

PCP class:

$$
r, 9, m, t, a: \mathbb{N} \rightarrow \mathbb{N} \quad 0 \leqslant 8<c \leqslant 1
$$

$L \in P_{C, B}[r, q, m, t, a]$ if J a (r, $9, m, t, a$) -restricted verifier V ot
Comp: $x \in L \Rightarrow-7 \pi \quad \operatorname{Pr}[(D(\pi / \varnothing)=1] \geqslant c$
Sound: $x \notin \angle \Rightarrow \forall_{(2)}^{\pi}$ 员 $\left.\angle D(\pi / Q)=1\right] \leqslant 8$.

$$
N P=\bigcup_{a} P C_{10}^{P}\left[0, n_{1}^{a} n^{a}, n^{a}, n^{a}\right]
$$

We will uscially drop parameter mfa
r-randomness
9- query complexity

$$
\begin{aligned}
& N P=\bigcup_{a} P C P, 0\left[0, n^{a}\right] \\
& B P P=\bigcup_{a} P C_{2 / 3,3}\left[n^{a}, 0\right] \\
& m \leqslant g(n) \cdot 2^{r(n)}, \quad \epsilon(n)=p o b(n), a(n)=p d y(9)
\end{aligned}
$$

$C=1$; perfect completeness.
PCP Theorem I: There exists a constant Q, $\forall \angle \in N P$, \exists constant C.

$$
L \in C_{1 / 1 / 2}[c \log n, \underbrace{Q}
$$

toss random Q Cations cons Other.

$$
P_{C, 8}[r, 9] \subseteq \operatorname{NTME}\left(\cdot 2^{x}(t+a)\right)
$$

COy going over all randomises)
PCP Theorem.

$$
N P \subseteq C_{(3)} P C_{1 / 1 / 2}[C \log n, Q] \subseteq \mathbb{N P}
$$

An shat

$$
N P=P C P / 1 / 2[\log , O(1)]
$$

Approximation Algor, this
NP-hard combinatorial aptronization problem

- Vertex Cover 7 NPhard to
- Max Sat compute the
- Max Clique optional sols.
-What about an approximation. $\alpha \in(0,1)$. İ Maximisation Problem
A is an α-approxiratation of the of for every instance x of Φ

$$
\begin{aligned}
x & \rightarrow A \\
\alpha \cdot O P P T_{\Phi}(x) & \leqslant A(x) \leqslant A(x)
\end{aligned}
$$

Vertex Cover: 1/2-approxmation Ind a maximal matching is G $=$ alp all end points.

$$
|\operatorname{VC}(\sigma)| \leqslant 2|M M(\sigma)| \leq 2|\operatorname{rc}(\sigma)|
$$

MAX3SAT: 7/8-approximation.

$$
\psi=\underbrace{\left(x_{i} \vee y+x_{k}\right)(\cdots \cdot)}_{m}
$$

Find an absign trat batistes as many clauses as possible?
7/5p: $\frac{2}{3}$-approximaton.

Qn: Gren an max/min proctern what st the best factor upto culich we can approxmate it?
Focus aftertion of MAXSSAT -approximate of MAXBSAT
\rightarrow Decrision Kersion of the problem.
Defn: gap-MAXBSAT $(\alpha \in(0,1))$ $Y E S=\{(\varphi, R) / \exists$ an assignment batrsties af least \& तlacises)
$N O=\{(\phi, k) / \nLeftarrow a s s i g n$ at most att claases are sat'sficd?

Prop: α - approximation of MAxBSAT is paytrone

Af: \Leftrightarrow Scppose A is an α-approx alo for MaxGSAT
$B=$ On imput (φ, k)

1. Pun A on $\varphi=$ (et $R^{\prime}=A(\phi)$
2. Accept if $k^{\prime}>\alpha k$.

$$
\begin{aligned}
(\phi, k) \in Y E S \Rightarrow \operatorname{OPT}(\varphi) \geqslant k & \Rightarrow A(\varphi) \geqslant \alpha \cdot O P T(\phi) \\
& \Rightarrow A(\varphi) \geqslant \alpha k \\
& \Rightarrow B \text { B correct } \\
(\phi, k) \in N O \Rightarrow \operatorname{OPT}(\varphi) \leqslant \alpha k & \Rightarrow A(\varphi) \leq \operatorname{OPT}(\varphi) \\
& \Rightarrow B \text { is correct. }
\end{aligned}
$$

(\Leftarrow)) Scppose B is an aly for gop-MAXBSAT A: On mpat φ.

$$
\text { : } n=A \text { clauses of } \rho
$$

2. Rum $B(\varphi, 1)$. $B(p, m)$.
3. k-largest s.f $B(\varphi, k)=$ yes
4. Qafpat ak.
\bar{B} rejeds $(p, k+1)$ (6) accepts (p, k)

$$
\operatorname{OPT}(\phi) \leqslant k \quad \operatorname{OPT}(\phi) \geqslant \alpha \beta
$$

Hence, $\alpha \cdot \operatorname{OPT}(\varphi) \leqslant \alpha 反 \leqslant \operatorname{OPT}(\rho)$
Hence, A is corred

PCP. Theorem. II.
\exists an $\alpha \in(0,1)$. sach that SAT is polytime is redarible to gape-MAX3SAT

$$
\begin{aligned}
& \psi \in S A T \quad \Rightarrow \quad R(\psi)=(\varphi, k) \in Y E S \\
& \psi \notin S A T \Rightarrow R(\psi)=(\varphi, k) \in N O
\end{aligned}
$$

Cos: J $\alpha \in(0,1), \alpha$-approximating MAX3SAT 16 NP. hard.

$$
\begin{aligned}
& \text { TQap-MAXSAT } \\
& \text { YES }=\{\varphi / \varphi \in 3 S A T\}
\end{aligned}
$$

$N O=$ इ९/ \forall assignments at most w.oh claubes are satstred]

PCP Theorem II: $\exists \alpha \in(0,1)$ gap-MAXBSAT is NP-Fard. Condex deteromiontra
Q6s: Pep Thm $\bar{\Pi} \Rightarrow$ PCP Thrm \mathbb{I}

Lemma: PCP Theorem I = PCP Theorem are equivalent.
cqurvatence of the 2 versions of $P C P$ Thesem Pf. $(\Leftrightarrow \mid P C P$ Thin III \Rightarrow PCP Thin I.

Suppose gap-MAX3SAT is MP-hard.

$$
=\text { let } \angle \in N P
$$

$$
\angle \lesssim_{P} g \square P_{R} \text { MAX SAT* }
$$

Restrided Verifier: V: On copal x 1 It rains reach R π-assignment to $\varphi=R(x)$ the wis of $R(x)=p$.
2. Pret a random clause lin φ.
3. Query the 3vary in $C 2$ accept of the proof satisters the days.

$$
\begin{aligned}
& L \in P_{1, \alpha}[\log m, 3], m=\begin{array}{c}
\text { clacks } \\
\\
\subseteq P_{1, \alpha}+[k \log m, 3 \in]
\end{array} \quad m P(x)=\varphi
\end{aligned}
$$

(\Rightarrow) PCP Theorem I $\Rightarrow P_{C P}$ Theorem III. SAT
(PT) \Rightarrow SAT has a (clogn, Q) -restricted
for some constant $c \& Q$.
We need to trad a reds from SAT to gap-MA×3SAT*

MAXQSAT

- Vars: proof lots
the restricted
vorster
- Clauses:

Punning time of rede $=2^{r(n)} \cdot t(n)$.

$$
\begin{aligned}
& =2^{c l o g n} \cdot p d y(n) \\
& =p o l y(n) .
\end{aligned}
$$

MAXQSAT \longrightarrow MAXBSAT.

QGs $\forall Q, J l(Q)$ L $E(Q)$ sit any Boblean fr φ on Q varia Gles can be encoded by a उCNF formula $R(\varphi)$ a/ $l(g)$ - extension varralles $=K((Q)$ clacases b-t
φ is sat $\Rightarrow h(\rho)$ is satstable φ is notsot $\Rightarrow h(\phi)$ is not satistiabir
\qquad

YES: D is a satistralle BSAT instance

NO: Hassign. \#clauses are sathtied

$$
\begin{aligned}
& =(1-\alpha) \cdot 1+\alpha\left(1-\frac{1}{k}\right) \\
& =1-\frac{\alpha}{k} .
\end{aligned}
$$

Pdynomal trme redn

$$
\text { SAT to } g 0 p, \alpha / k-M A X 3 A T
$$

10
$g_{\alpha}-M A \times 3 A T^{4}$ IS NP-hard
restricted ventier or NP
-PCPTh.

Coriolf there' s a det α-approx

$$
\text { fo MAXBSAT } \Rightarrow \text { SAT } \in P
$$

(2) If there 4 a rond α-appray fo MAXBSAT \Rightarrow SAT $\in B P P$
(Next line: Inapproxmability of Cligue Stetch of $P C P$ Irm Proof).

