Today
Lecture 26
PCP (lectare 2) Computational

- In approximabilly of CligufComploxty (7 May'20j
- Exponential sijed PCE/inotructor. Prahladh
Harsha
\angle

$$
\angle \in P \subset P / / 2[r, 9, m, t, a]
$$

$\left\{\begin{array}{l}r=\text { \#random coins } \\ q=\text { \#quertes }\end{array}\right.$

Today: Appication to hardoress of approximating Max Naligue.
Trival: \%/r-approximaton.

$$
\begin{aligned}
& \text { gap-CLQUE } \text { YES }=\{(G, k) / \text { Max.Clgue }(G) \geqslant k\} \\
& \alpha \in(0, \lambda) \\
&(G, k) \text { NO } \overline{(1)}\{(G, k) / \text { Max.Clige }(G) \leqslant \alpha k\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Drop }
\end{aligned}
$$

Goal: Does $J \quad \alpha \in(0,1)$, sit there is a polytime reds from SAT to gOP-CLIQCE?

Thin. $\mathbb{A F} \angle \in P C P$. $[r, 9, E]$, then there existo a defermmistic redo running in time p dy $\left(E \cdot 2^{r+q}\right)$ from \leq to $g a p_{s} / E-C L Q Q E$.
-PCP Theorem: SAT $\in P C P, 1 / 2[O(l o g n), O(1), ~ E-p a r]$
COR: (PCP Th + Th): SAT \leqslant P gapirin CLIQUE.
Proof of FGLSS Thin:
Earp reduction from SAT to Clique:

$$
\begin{aligned}
& \angle \in P C P, B \\
& L r, q, t] \\
& L \longmapsto g a p_{Q} / C-C L I Q C E \\
& x \longmapsto(G, R) .
\end{aligned}
$$

$$
\begin{aligned}
& V(G)=2^{r} \times 2^{q}=\text { Cloud of each randomness } \\
& \text { (2) possibleinlocal new of verifies. }
\end{aligned}
$$

$$
E(G)=\left[\left(R, b_{1} . . \sigma_{q}\right) \sim\left(R^{\prime}, \sigma_{1}^{\prime}, . \sigma_{g}^{\prime}\right)\right]
$$

Penniongtive/ (a) $b_{1} \ldots b_{y}=6_{1 . .}^{\prime} b^{\prime}$ satisty the predicate D an rand $r>r^{\prime}$
(2) They are consrsfert

6 - 2^{r}-partife araph (fhere are no edges wiftin a clacid)

$$
\begin{aligned}
& k=c 2^{r} ; \quad \alpha=s / c . \\
& x \in L \Rightarrow J \pi, P\left.\angle V^{\pi}(x ; R)=a c c\right] \geqslant c . \\
& \Rightarrow S \subseteq V(G) \\
& S=\left\{(R, \bar{b}) / R \in\{a,\}^{r},(Q, D) \leftarrow r(x ; R)\right. \\
&\left.D(\bar{b})=a c c, \quad \pi Q_{Q}=\bar{b}\right\} .
\end{aligned}
$$

All reatices in n_{π} are consiotiont w/ each ather.
Hence, $\frac{S}{\pi}$ is a clrque.

$$
\begin{gathered}
|S,| \geqslant c \cdot 2^{r} \\
\left(\sigma, c 2^{x}\right) \in \text { VES (gap//-cLQUE) } \\
x \notin \angle \Rightarrow\left(\sigma, c 2^{x}\right) \in N O\left(g \alpha_{s / c}-C L I Q U E\right)
\end{gathered}
$$

\longrightarrow need to show
In other words, need to show

$$
\begin{aligned}
\text { MAXCLIOCE }(\sigma) & \leqslant \frac{8}{C} \cdot \subset 2^{r} \\
& =\measuredangle \cdot 2^{r}
\end{aligned}
$$

Suppose this is false, re, MAXCLIQCE (C)
(3) $\rightarrow 8.2^{2}$
le, $J>s 2^{r}$. random coins i correspondm acception. local views that are completely parrarse consistent
π - proof constranted by extending, these local

$$
P_{r}\left[r^{\pi}(x ; R)=\operatorname{acc} 7>s\right.
$$

$$
\rightarrow<\text { contradiction }
$$

Sequential repetition of PCP:

Efferent randomness repetition (recycling
k-different random cams rondebmess)
-pick them from a k-btep on a constant degree expander.

$$
\begin{aligned}
& -r+k \cdot \log D \quad C D \text {-degree of expanoksl. } \\
& =P C P[r, G, f] \subseteq P C P[r+O(k), k q, k]
\end{aligned}
$$

(4)

$$
\begin{aligned}
& P \subset P_{1, s}[r, q, t] \subseteq \operatorname{PCP}[r k, q \in, t \in] \\
& \text { SAT } \in P C P_{1 / 2}\left[\log _{n}, 3\right] \subseteq P C P_{1 / 2 k}[t \log n, 3 k] \\
& \text { SAT } \leqslant \text { g gap } 1 / 2 \text { - }-C L Q L E \text { in tron } \\
& \text { poly (} 2 \text { klogn+3,k]) } \\
& \text { Cor: } \forall \alpha \in(0,1) \text {, gap-CLIQCE is NP-hond. }
\end{aligned}
$$

SAT $\in P C_{1 / 2}[\log n, 3] \subseteq P C P / 1 /[O(\log n), O(\log n)$

$$
\text { , pol. } 7 \text {. }
$$

Hastad, (recycled queries), Ecckerman Tho $\forall \varepsilon \in(0,1)$, gap /iii- -CLIQCE is NP fard.
(Hhatod- randomized rede Zockerman - derandomiped using
extractors).

CLIQUE - amosityed query
\rightarrow how mach does the soundness fall w/ each query.
CTr the limits each additional query halves the sundress)

Next time - Girls eye view of the proof of the PCP Theorm

