Today

- Derandomization implies Circuit Lower Boands

Lecturc 32 Computational Complexity (16 Jon, 2620)

- Casy Witoress Method instructor: Prahladh Horata

Recall some of the derandomiration rescilts
[NW]: $f \in E$ that is strongly average-case hard for $2^{8 n}$ - sined ckts (rie, all ckts Cof sine $2^{\text {sin }}$ satioty

$$
\operatorname{Pr}\left[f(x)=((x)] \leqslant \frac{1}{2}+\frac{1}{2^{\sin }}\right)
$$

then $\quad B P P=P$.
[IW] If $f \in E$ \&f f is worst-case haxd for $2^{\text {singried }} c k+s$, then $B P P=P$

Lon lecture, proot due to Sudan. Feevisan-Kachon]
These proots are stronger that they give some derandormination even on weaker hypotheses.
[IW'J: f E E st f is worstcase hared to 2^{n}-sired ckts for all $\varepsilon \in(0,1)$

$$
\text { BPD } \subseteq \text { (i) DTIME }\left(2^{\text {patylogn })}\right.
$$

[IW"] feE st f is worst-case hard for n^{c}-sized cts for all $c \geqslant 1$

$$
B P P \subseteq \bigcap_{\forall \varepsilon, 0} \operatorname{DT} \operatorname{MAE}\left(2^{n^{6}}\right)
$$

All these results are of the trim some ct lower bd \Rightarrow bone derandomization of BPP
a be "fer upper bound for BPP than EXP.
Qr: Do we really need cit lower bounds to prove these results?
Wont be able to show for BPP Bat work w/ MA instead.

We can prove similar derandomipaton rests for MA.
$f \in E$ st f is worst-case hand against $2^{8 n}$-sized cts, then $M A=N P$
Today, these derandominetion resets of MA require crrcart lower bounds In fact derandomizing PIT requires chart

Karp-Kipton Thecrem: NP $\subseteq P / P$ bly $\Rightarrow N P \subseteq \sum_{2}^{P}$
Meyer's Thearm: EXP $\subseteq P$ poly \Rightarrow ExP $=\sum_{2}^{P}$
Itrengthening of Meyers Mhesern due to boterantive Proots.

Thim: EXP $\subseteq P / P d y \Rightarrow$ EXP \subseteq MA...(A)
Pf: Assume EXP $\subseteq P$ Poly
Meyers thom EXP $=$ PSPACE $=\sum_{2}{ }^{\top}$
PSPACE $=$ IP and furthermore the prover in IP for PSPACE reguires onty paly space.
PSPACE SPlpoly. (due to the Sypathesis) flence, the IP-prover con be dercribled by a poly-sined att
Consider the fllowing MA-protocal fo any $\angle E P S P A C E$

Qon copeat x
Merlon
Arthar
Asthice does the entre IP-protorol. usmy pely-sined ckt.
(3)

Hence $\angle \in M A$
1e, PSPACESMA. Hence, EXPSMA. 28

This thm shows
any beparation of MA from EXP mplier a crrcoit bwer bound.

Soppose, we had the following thesem IKL] NEXP $\subseteq P / P o l y ~ \Rightarrow N E X P \subseteq M A$

This coould imply any derandomization of MA mples a ctf lower bound. Impagliazzo- Kabancts. Nigderson proved this asing the easy-curtoness method

Pokpomial- Identity resting:
Theorem [kabauets-/mpagliazzs]
Scppore PIT A Cre, PIT can le derondominas completely).
perm has poty-sined algebrarc crouct

Pf: Natural NP-aly for $p^{\# 1}$ is as follow
$S^{(1)}$ Cues the poly signed alg oft fo
(2) Use crrcust to answer the oracle calls to perm.

Problem: How does one know that the guessed crecuit is correct?
Close the fact that perm is downward self redcrible.

$$
\text { Perm }\left(M_{n \times n}\right)=\sum_{i=1}^{n} M(1, i) \operatorname{Perm}_{n-1}\left(M^{(i, i)}\right)
$$

Replace Step (1).
-(Pa) Guess poly signed cts ba bern of matrix $1,2, \ldots n$.
(16) Check that Gi is correct if $G=1$ is correct using the identify ((x)

$$
(\text { PIT } \in P)
$$

(cc) C_{1} is abl correct fence, G is correct

A combination of this o's $=$ Ito the implies any derandomization of A1T
mplies ckt Tower bounds.
Theorem [Kabanets- Impagliazzo]
If PIT EP then one of the following mast be trae.
(a) NEXP $£ P$ Pody
(b) perm $\notin A 1 g P /$ poby.

Pf To contradiction.
(1) $P r T \in P$
(2) perm \in AgP/poly
(3) NEXP $\subseteq P$ poly

$$
\begin{aligned}
(y) & =(2) \\
& \Rightarrow P^{\# \# D}
\end{aligned} N_{N P}
$$

(3) $\Rightarrow N E X P \subseteq M A$

NEXP $\supseteq P^{\text {\#P }} \supseteq$ MA $\supseteq N P$

$$
\begin{aligned}
& \text { NEXP }=\text { NP } \\
&- \text { contradiction }
\end{aligned}
$$

Hence, at least one of (1), (2) (3) mut be follse $\triangle \triangle$
A derandomipation of P1T imples a cft lower
CPoof con be strengthened to show any weat derandolominaton of PIT also mpties(6) creccilf lower botsh.

Casy-Witress Method
[ITKW] NEXP \ddagger EXP \Rightarrow NEXP $\notin \#$ Poly

$$
\begin{aligned}
& \angle E \text { NEXP , EXP. } \\
& \angle \in \text { NEXP }
\end{aligned}
$$

!
\exists a relation $R(x, y)$ compatable in

$$
\text { time } 2^{n^{a}} \quad n=\mathrm{bel}
$$

$$
2^{14^{6}} \text { ett }
$$

$$
x \in \angle \Leftrightarrow \exists g \in[0,]^{2}, R(x, y) \text { is frae. }
$$

By padding, lets assume $a=6=1$

Can $y \in\{0,3]^{2^{x \mid}}$ - y can be thougtif
as a frath. toble of a m.

$$
f:\{0,1\}^{7} \rightarrow\{0,1\} .
$$

$x \in\left[\Leftrightarrow \exists f:\{0,1]^{7} \rightarrow\{0,1\}, \quad R(x, T T(f)) \equiv 1\right.$
f is easy if it can be comparted by a pdy-sined corcurt (say on')

$$
\begin{aligned}
& x \in L \Leftrightarrow \exists y \in\{0,1\}^{2^{|x|}} \text { s.t } R(x, y)=1 \\
& 2 R \text { is compartalle in }
\end{aligned}
$$

Suppose this were the case that is for every $x \in L$, there is a curtness $y=T T(f)$ that is. $n^{\text {Greasy }} \mathrm{Cre}$, f 8 computable Cy a ct of sine n ct. then the following exp-time alg solves L.
(1) Fo over all passible cts of sine n^{c}
(2) Check if the TT(C) is a doithess 2 accept

$$
\text { Donning time }=A c k t s \cdot 2^{n}=\exp (n)
$$

If $N E X P \neq E X P$, then there is a $\angle E$ NEXPVEXP such that \angle for every $c \in \mathbb{N}$, there is an infinite subset $N \subseteq \mathbb{N}$ sit $\bar{H} \forall$ $n \in N_{0}$, there exists an $x \in L$.

$$
\begin{aligned}
& -|x|=n \\
& -\quad x \in<.
\end{aligned}
$$

- every curtness if x is not easy.

$$
\text { NEXP } \neq E X P \quad \Rightarrow M A \subseteq 10-N T / M E\left(2^{n^{a}}\right) / n
$$

Use a Gove to derandomige MA

Use y to as the fasis fo PRG derandomin his rondom steps.
MA \subseteq co- $\operatorname{NTME}\left(2^{n^{a}}\right) / n$. if NEXP $\neq E X P$.

Completring: ItN proof.
Thm: NEXP \subseteq P/poly \Rightarrow NEXP $\triangle M A$
Pf:

$$
\begin{aligned}
N E X P \subseteq P / P d l y & \Rightarrow \text { EXP } \subseteq \text { P/poly } \\
& \Rightarrow E X P=M A .
\end{aligned}
$$

Cases
(i) $N E X P=E X P: \quad N E X P=M A$
(ii) NEXP $\neq E X P: M A \subseteq \operatorname{Co}-\operatorname{NTM} E\left(2^{n^{a}}\right) / n$

$$
\text { EXP } \subseteq \operatorname{co-NTME~}\left(2^{n}\right) / \sigma
$$

\leftrightarrow diagonaliration is tas.
(9) This case connot arise \triangle

