
Levin’s Proof of Yao’s XOR Lemma

Jaikumar Radhakrishnan∗

1 Preliminaries

Definition 1.1 (Correlation of functions) Let f, g : {0, 1}n → {+1,−1}, and X be a random
variable taking values in {0, 1}n. Then, the correlation of f and g (w.r.t. X) is given by

corr
X

(f, g)
def
= |E[f(X) · g(X)]|.

Remark. Note that corrX(f, g) = |Pr[f(X) = g(X)] − Pr[f(X) 6= g(X)]|; when the random
variable X is not explicitly given, we will assume it to have uniform distribution over {0, 1}n.

Definition 1.2 (Hardness) We say that the function b : {0, 1, }n → {+1,−1} is (p, T)-hard if
for all circuits C of size T , corr(b, C) ≤ p.

In terms of probability, b is (p, T)-hard means that no circuit of size at most T can predict T
correctly on more than 1

2 + p
2 fraction of the inputs. Here, corrX(b, C) should be thought of as the

measure of how well C predicts b.

Motivation. Imagine a situation where we have a function b : {0, 1}n → {+1,−1}, which is
mildly unpredictable; say, it is (1 − δ, T)-hard for some small but non-negligible δ. This implies
that that b is somewhat unpredictable. We would like to use b to produce another function b′ that
is very unpredictable, say we want its predictability to be smaller than some ε. One natural method
of reducing the predictability is to XOR several copies of b. That is, we consider the function

b(t) : ({0, 1}n)t → {+1,−1},

where

b(t)(X1, X2, . . . , Xt)
def
=

t∏
i=1

b(Xi).

How unpredictable is b(t)? If one believes that there is not much one can do to compute b(t) than
compute each b(Xi) separately, then it seems that the predictability of b(t) should fall to pt. Yao’s
XOR Lemma roughly confirms this sentiment. Unfortunately, the proof is not straightforward. The
proof given below is due to Levin, and is based on [GNW11, BH89].

Most of the ideas of the proof are contained in the special case of t = 2. This case is treated in
the following section. For the general case we will apply this lemma repeatedly (see Section 3).

∗TIFR, Mumbai. email: jaikumar@tifr.res.in

1

2 The XOR of two functions

Lemma 2.1 If b : {0, 1}n → {+1,−1} is (p, T)-hard then for all ε > 0, b(2) is (p2 + ε, ε2T −O(1))-
hard.

Proof: We first present the main ideas of Levin’s proof, pointing out the difficulties and making
several assumptions (some of them invalid) along the way. Later, we will deal with these difficulties
and remove the assumptions.

Let C(X,Y) be a circuit; let T ′ be its size. We want to show that if T ′ is small, then it cannot
predict b(2)(X,Y) well. Now,

corr(C, b(2)) = E
X,Y

[b(X)b(Y)C(X,Y)]

= E
X

[b(X) E
Y

[b(Y)C(X,Y)]]. (1)

We know from the unpredictability of b that for all circuits D of size at most T ,

E
X

[b(X)D(X)] ≤ p. (2)

The right hand side of (2) looks remarkably like the right hand side of (1), except that we have the

function g(X)
def
= EY [b(Y)C(X,Y)] where we want D(X). Before we use this observation, we must

somehow take care of the following difficulties.

(a) The function g(X) is not so easy to compute. There are two reasons for this: we need to
average over 2n possible values of Y , and this is too much for a circuit of small size to do;
second, we don’t know how to compute b (the hypothesis of our lemma, in fact, says that
small circuits find b hard to predict!).

(b) The second difficulty concerns the type of values g takes. In (2) D is supposed to be circuit
returning values in the set {+1,−1}; g(x) on the other hand, gives the correlation of b(Y)
with the circuit C(x, Y), and this is a value in the range [+1,−1]. In fact, our hypothesis
states that if C(X,Y) has size at most T , then g(X) ∈ [−p, p]. This is actually a good sign: if
a correlation greater than p is not possible with circuit of size T that outputs values {+1,−1},
then, surely, with the output of the circuit scaled down by a factor of p, the correlation should
become correspondingly smaller. That is, when we use (2) with g(X) instead of D, then we
must have an extra factor of p, because g(X). Thus, we should expect the correlation with
g(X) to be about p2. To exploit this observation, write

corr(b(2), C) = p|E
X

[b(X)
EY [b(Y)C(X,Y)]

p
]|, (3)

so that for all x ∈ {0, 1}n, the function g̃(x)
def
= EY [b(Y)C(x, Y)]/p, takes values in the range

[−1, 1].

Assumption. Let us ignore the difficulty pointed out in remark (a) above, and go ahead. Sup-
pose, there is a randomized circuit D̃(X) (whose random coin tosses R comes from some distribu-
tion) such that

2

1. For all x, E
R

[D̃(x)] = g̃(x);

2. The size of D̃ is at most T .

With this assumption, we may write

corr(b(2), C) ≤ p|E
X

[b(X)g̃(X)]|

= p| E
X,R

[b(X)D̃(X)]

= p|E
R

[E
X

[b(X)D̃(X)]]|. (4)

For each fixed choice of r of R , D̃ is a deterministic circuit of size at most T . Thus, if T ′ ≤ T ,
then |EX [b(X)D̃R=r(X)]| ≤ p. Hence, by (4),

corr(b(2), C) ≤ pE
R

[p] = p2,

that is, b(2) is (p2, T)-hard. 2

Remark. This, of course, is much better than what the lemma claims. This is because of the
assumption we used above. We will not be able to prove the assumption as stated, but instead the
following approximate version of it.

Claim 2.1 Suppose C is a circuit of size at most T . Then, for all δ, there is a randomized circuit
D̃ such that

1. For all x, |E
R

[D̃(x)]− g̃(x)| ≤ δ

p
;

2. The size of D̃ is at most 1
δ2
T ′ +O(1δ).

This claim will be proved below by supplying an algorithm for approximating g̃(x). First, let us
see how this claim implies our lemma.

Proof of Lemma 2.1. We now return to the proof of Lemma 2.1. To apply Claim 2.1, we will
assume that

size(C)
def
= T ′ ≤ T. (5)

Then, using the estimate provided by the claim with ε for δ, we get

corr(b(2), C) ≤ p|E
X

[b(X)g̃(X)]|

≤ p| E
X,R

[b(X)D̃(X) + b(X)(g̃(X)− D̃(X))]|

≤ p| E
X,R

[b(X)D̃(X)]|+ p| E
X,R

[b(X)(D̃(X)− g̃(X))]| (6)

≤ p2 + pE
X

[b(X)|E
R

[D̃(X)− g̃(X)]|]

≤ p2 + ε.

3

To bound |EX,R[b(X)D̃(X)]| by p in (6) we require to assume that D̃ has size at most T . Since by
Claim 2.1, D̃ has size at most 1

ε2
T ′ +O(1ε), this implies that our argument is valid as long as

size(C)
def
= T ′ ≤ ε2T −O(ε). (7)

We have, thus, shown that b(2) is (p2 + ε, ε2T −O(ε))-hard. 2

2.1 Algorithm for D̃

Given. A function b : {0, 1}n → {−1, 1} and a circuit C(X,Y). Suppose for all x, |EY [b(Y)C(x, Y)]| ≤
p.

Task. Design a randomized circuit D̃ that uses random bits R (with some distribution) and meets
the requirements of Claim 2.1.

Solution. Given an input x, we want to approximate the expected value of b(Y)C(x, Y) as Y
takes value in {0, 1}n according to its distribution. Recall that we earlier faced some difficulties
in doing this. First, how do we sum over 2n values using a small circuit? Answer: generate a
small sample of values Y and compute the expectation of b(Y)C(x, Y) over this sample instead of
the whole set of values. The error will go down exponentially with the size of the sample, so we
can approximate g̃(X) quite efficiently. But, there was another problem. Even if it is possible to
generate values for Y at random, we don’t know how to computer b efficiently. To circumvent this
problem, instead of generating values of Y and computing b(Y) ourselves, we will generate a sample
of pairs 〈Y, b(Y)〉—that is, the computation of b now becomes the headache of the distribution of
R.
Remark. The claim that D̃ is a randomized circuit should be taken with a pinch of salt—the
random bits it uses, admittedly, come from quite a complicated distribution. Our argument above,
however, does not suffer on account of this: we nowhere assumed that the distribution of R was
easy to compute.)

Fix the sample size s, and let R̃ be random variable taking values in ({0, 1}n × {1,−1})s such
that

Pr[R̃ = 〈〈y1, e1〉, 〈y2, e2〉, . . . , 〈ys, es〉〉] =

{ ∏s
i=1 Pr[Y = yi] if ∧ti=1 b(yi) = ei

0 otherwise
.

Now, the circuit D̃ implements the following algorithm. Let the input be x.

1. Pick R̃ = 〈〈y1, e1〉, 〈y2, e2〉, . . . , 〈ys, es〉〉.

2. Compute v = 〈e1C(x, y1), e2C(x, y2), . . . , esC(x, ys)〉. Thus, v corresponds to values for
b(Y)C(x, Y) for a sample of s randomly chosen values for Y . We expect the number of
1’s in this list to be between k1 = 1−p

2 t and k2 = 1−p
2 t. Let the actual number of 1’s in v be i.

3. If i ≤ k1 then output −1. If i ≥ k2, then output 1. Otherwise, let i = 1+q
2 s (−p < q < p);

output 1 with probability 1
2(1 + q

p) and −1 with probability 1
2(1− q

p).

4

Remark. The random bits used by D̃ are R̃ used for generating v and the random bits used for
deciding the output when the number of 1’s in v is between k1 and k2.

Thus,

E[D̃(x) | number of 1’s in = i] =

+1 i ≥ 1+p

2 s

−1 i ≤ 1−p
2 s

2i−s
sp otherwise

.

Let α = PrY [b(Y)C(x, Y) = 1]; then α ∈ [1−p2 , 1+p2], and

g̃(x)
def
=

EY [b(Y)C(x, Y)]

p
=

2α− 1

p
, (8)

and

E
R

[D̃(x)] = −1 ·
k1∑
i=0

(
s

i

)
αi(1− α)s−i

+
∑

k1<i<k2

(
s

i

)
αi(1− α)s−i

2i− s
sp

+ 1 ·
s∑

i=k2

(
s

i

)
αi(1− α)s−i (9)

From this, it follows that (see below)

|E
R

[D̃(x)]− g̃(x)| ≤ 1

p

√
1− p2
2πs

. (10)

Now, set s = 1/δ2. Then the error is now at most δ; furthermore, the algorithm for D̃ can be
implemented using a circuit of size 1

δ2
T ′ +O(1δ). 2

2.2 Deriving (10) from (9)

Boppana and Hirschfeld [BH89] give a nice derivation of (9) from (10). We present their analysis
below. If the sum in the middle term of (9) is allowed to range over all values of i (from 0 to s),
then we get

s∑
i=0

(
s

i

)
αi(1− α)s−i

2i− s
sp

= EI [
2I − s
sp

] =
2αs− s
sp

=
2α− 1

p
,

where I is the sum of s independent 0-1 random variables, each taking value 1 with probability α.
The right hand side above is precisely g̃(x) (see (8) above), which D̃(x) is expected to approximate.
It is natural, then, to separate out this part from (9), and write

E
R

[D̃(x)] =

k1∑
i=0

(
s

i

)
αi(1− α)s−i(−1− 2i− s

ps
)

+

s∑
i=0

(
s

i

)
αi(1− α)s−i

2i− s
sp

+

s∑
i=k2

(
s

i

)
αi(1− α)s−i(1− 2i− s

ps
).

5

That is, the middle sum gives us precisely g̃(x), and the first and last sums constitute the error.
We will now bound this error. In fact, the first and last sums are symmetrical; the first is always
positive; the last is always negative. So, it will suffice if we bound the absolute value of one of
them. Let us concentrate on the last sum. We write it as

− 2

ps

s∑
i=k2

(
s

i

)
αi(1− α)s−i(i− k2). (11)

Now, k1
s ≤ α ≤

k2
s ; for this range of values of α, (11) is always negative, and maximum in absolute

value when α = k2
s = 1+p

2 . If α is fixed at k2
s , the sum in (11) has a closed form1.

s∑
i=k2

(
s

i

)
αi(1− α)s−i(i− k2) = s

(
s− 1

k2 − 1

)
αk2(1− α)s−k2+1.

Thus, the absolute value of (11) is at most

2

ps
× s
(
s− 1

k2 − 1

)
αk2(1− α)s−k2+1 ≤ 1

p

√
1− p2
2πs

,

where, for the inequality, we used α = 1+p
2 , k2 = αs and the following version of Stirling’s formula

due to Robbins: (n
e

)n√
2πn× e1/(12n+1) < n! <

(n
e

)n√
2πn× e1/12n.

1This closed form has a combinatorial interpretation. Let

f(p) =

s∑
i=k

(
s

i

)
pi(1 − p)s−i.

That is, f(p) is the probability that in s independent trials of a 0-1 random variable that takes the value 1 with
probability p, we see at least k ones. Then,

df

dp
=

s∑
i=k

(
s

i

)
pi(1 − p)s−i−1(i− ps). (12)

On the other hand, the derivative of f(p) can be calculated directly. Consider s independent 0−1 variables where the
ith variable takes the value 1 with probability pi. Let g(p1, . . . , ps) be the probability that the sum of these variables
is at least k. Note that f(p) = g(p, p, . . . , p); thus,

df

dp
=

s∑
i=1

∂g

∂pi

∣∣∣∣
∀j:pj=p

.

Now, ∂g
∂pi

∣∣∣
∀j:pj=p

is exactly the probability that the ith variable has an influence on g (probability computed over

the choices of the other variables). It follows that

∂g

∂pi

∣∣∣∣
∀j:pj=p

=

(
s− 1

k − 1

)
pk−1(1 − p)s−k,

and
df

dp
= s

(
s− 1

k − 1

)
pk−1(1 − p)s−k.

We have, thus, obtained a closed form expression for the sum in (12).

6

3 XOR of more than two functions

As stated above, the general case follows by repeated application of the special case. But, for that,
we need to slightly strengthen what we proved for the XOR of two functions.

Lemma 3.1 (Isolation Lemma) Suppose b1 : {0, 1}n1 → {+1,−1} and b2 : {0, 1}n2 → {+1,−1}
are boolean functions, such that b1 is (p1, T1)-hard and b2 is (p2, T2) hard, then for all ε > 0, b1 · b2
(which is a function from {0, 1}n1+n2 to {+1,−1}) is (p1p2 + ε, T)-hard, where T = min{ε2T1 −
O(1), T2}.

Proof: The proof is similar to the proof of Lemma 2.1 of the previous section. In that proof, we
used the hardness of the function b twice: in assumptions (5) and (7). When we repeat the proof
with b1 and b2 instead of b, we observe that the T in (5) now gets replaced by T1, whereas the T
in (7) becomes T2. Thus, the argument is valid as long as the circuit predicting b1(x1)b2(x2) has
size at most min{ε2T1 −O(ε), T2}. 2

Lemma 3.2 (Yao’s XOR Lemma) If for i = 1, 2, . . . , `, bi(xi) is (p, T)-hard, then for all ε > 0,
the function

∏`
i=1 bi(xi) is (p` + ε, ε2(1− p)2T)-hard.

Proof: Let us first consider the case ` = 3. By the Isolation Lemma, b(x2)b(x3) is (p2 + δ, δ2T −
O(1))-hard, for all δ > 0. Then, by applying the Isolation Lemma again to b(x1) and b(x2)b(x3),
we get that b(x1)b(x2)b(x3) is (p3 + pδ + δ, δ2T −O(1))-isolated.

In general, we can show that
∏`
i=1 bi(xi), is (p` + (p`−2 + p`−3δ + · · · + 1)δ, δ2T − O(1))-hard.

This implies, that
∏`
i=1 bi(xi) is (p` + δ/(1 − p), δ2T − O(1))-hard. To get the claim above, set

δ = ε(1− p). 2

References

[BH89] Ravi B. Boppana and Rafael Hirschfeld. Pseudorandom generators and complexity classes.
In Silvio Micali, ed., Randomness and Computation, volume 5 of Advances in Computing Re-
search, pages 1–26. JAI Press, Greenwich, Connecticut, 1989. 1, 5

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-Lemma. In Oded
Goldreich, ed., Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation, volume 6650 of LNCS, pages 273–301. Springer, 2011. eccc:

1995/TR95-050. 1

7

https://doi.org/10.1007/978-3-642-22670-0_23
https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-050
https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-050

	Preliminaries
	The XOR of two functions
	Algorithm for "707ED
	Deriving (10) from (9)

	XOR of more than two functions

