Today

Multiplicatre Weight Upolate Mettiod (part V)

- Hordcore set lemma
- XOR Lemma
- Wrapup
cs5.205. 1
Tooltet in TCS
- Lectare \#19 (26'Apr 21) Instractor: Prahladh Harsha

Application: Impagliazzo's Hardcore Jet
Previoasty, proved asing von-Neumann's Mrimax Theorem
Today, "Constractive" proof asing MWUM.
(Hardcore Set Lemma $\Rightarrow X O R$ Lemma)
Hard-core Sels
Bolean functons $f=\underbrace{[0,1]^{n}}_{i} \rightarrow \underbrace{[00,1]}_{\text {Bolean }}$ Botean hypercube Boolean (replaced by any set $X$ )
Model of compatation: ercurts.
CDAC wif intermal nodes
corresponding fo bmary 1, binary $I$ or unary NOT gotes \& leaves - inpat varcables)
Size of such crouit $=\#$ gates of the circuit.
How well does a ctet of sine atrosost 5 compate $f:\{0,1\}^{n} \rightarrow\{91\}$ ?

$$
\delta(c, f) \triangleq{\underset{r}{x} \underset{x}{ } \quad[C(x)=f(x)] \text { n }}[C(x)
$$

(1) Worst case Harchness

$$
\begin{gathered}
\delta(c, f)<1 \text { fo all ctts of } \\
\text { sne } S \text { ! }
\end{gathered}
$$

(2) Average-case fardness
(a) Mildly average-case hard. $\varepsilon$-weakly hard $\quad(\varepsilon \in(0,1 / 2))$ against ckts of sige 5 . if $\forall$ cets $C$ of sise (at most) $S$

$$
\delta(c, f) \leqslant 1-\varepsilon
$$

6) Jfrongly a verage-case hard r-strongly hard agamst ckt soe 5 $(r \in(0,1 / 2)$

$$
\delta(c, f) \leqslant \frac{1}{2}+\gamma
$$

Yao's XOR Lemma: Mildly average case ford Strongly average-case ford f'

$$
\begin{aligned}
& f:\{0,1\}^{n} \rightarrow\{0,1\} . \\
& f^{\prime}=f^{+\uparrow k}:\{0,1\}^{n k} \rightarrow\{0,1\} \\
& {\left[x_{1} \ldots x_{k}\right) \mapsto f\left(x_{1}\right) \oplus f\left(x_{2}\right) \oplus \ldots \oplus f\left(x_{k}\right)}
\end{aligned}
$$

Yao's XOR Lemma:
$f$ is e-weakly hard against cets of sre 5
$f^{(t) k} \quad r+(l-\varepsilon)^{k}$-strongly hard against ckts of soze $S^{\prime}=O\left(\varepsilon^{2} r^{2} S\right)$

Proof (due to Impagiazzo) via Hordcore Sets Hardcore Sefs


$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

$f$ is $\varepsilon$-mildly hard. against ckto of ${ }_{s}$
Fatts Cof size $S$

$$
\begin{aligned}
P_{x} \\
x \in\{0,1\}^{n}
\end{aligned} \quad[f(x)=c(x)]
$$

$H \subseteq\{0,1\}^{n}$ is $r$-hardcore set to against ctts of sige $S$.
if $\forall c k f_{s} \operatorname{cof} 8 x \quad S \underset{\substack{\text { Pr } \\ x \leftarrow H 1}}{P}[C(x)=f(x)]$ $\leqslant \frac{1}{2}+r$
Q6: HI $\leq\{0\},\}^{n}$. $1 H /=20 \cdot 2^{n}$ is a $r$-hardicre sel of ckts of sine $S$
fis (E-rl-weakty hard aganst ckts of sige $S$.
Hardcore set Lemma: Converse to the olservetion.
$H$ - set of sije $\theta(c)$.
H - hardcore distribution E-smooth distribution.

Tor any $\varepsilon \in(0,1)$. $D \sim\{0,1\}^{n}$ is sad to Ce $\varepsilon$-smooth

$$
\text { if } \forall x \in[0,1]^{n}, P_{P} \quad\langle X=x] \leqslant \frac{1}{\varepsilon \cdot 2^{n}}
$$

eq: E-smooth distrilation.
(1) uniform dist on 20,1$]^{7}$
(2) $\left.H \subseteq\{0, \lambda]^{n}:|H|=\varepsilon \cdot 2^{n}\right\}-\varepsilon-$ mooth D- unct dist on HI E-flat distrituti
(3) E-smooth dist is a convex combination of certlat diest (we won't ase this).
(4) $P=\{D / D$ is e-smooth].

D: $\{0,]^{n} \rightarrow[0,1]$
$P-$ convex set.
Impagliazzo's Hardoone Set Lemma: fi $\{0,1]^{\text {n }} \rightarrow\{0,1]_{18}$ ckts oweakty hard agamst ckts of sige 5

Then, there is a E-smosth dist $A$
st $f$ is $r$-strongly hard against dits of
sue $S^{\prime}=O\left(\frac{r^{2} S}{\log \left(\frac{1}{c}\right)}\right)$ on
$\forall$ (re, $\forall c k t s C$ of sine $5^{\prime}$

$$
\operatorname{Pr}_{x \sim H}[C(x)=f(x)] \leqslant \frac{1}{2}+r
$$

Pf: By contradiction
Suppose for every E-smooth distrolation H there is a ct $C$ of sire $S^{\prime}$

$$
\text { of }{\underset{c}{P}}_{\substack{P \\ x \leftrightarrow H}}[f(x)=C(x)] \geqslant \frac{1}{2}+r .
$$

(Last time: weak learner against every
strong learner)
Now. weak learner against s-smooth
strong learner.
Latch: $p^{(t)}-$ MuM outputs mast Ge an e-somooth dist.)

Boosting:

1. Sritialige $p^{(1)} \leftarrow$ Cnit dist on \{al $\}^{3}$
2. Fo $\in \leftarrow 1$ t $T$.
(a). Constract the ctt $C$ of sige $\leq s^{\prime}$ that

$$
\left.{\underset{x}{x<p}(t)}_{P_{x}}^{C C}(x)=f(x)\right] \geqslant \frac{1}{2}+r
$$

(b) Opdar

$$
\begin{aligned}
& \text { Propect } \tilde{p}^{(t+1)} \text { to } P \text { to ablain } \\
& \text { an E-smooth } \\
& P^{(t+r)}=\min _{\mathcal{P} \in \mathcal{P}} \operatorname{RE}\left(\tilde{P}^{(t-r)} / / / P\right)^{\text {distratato }}
\end{aligned}
$$

Mway (rel entropy).

$$
\begin{gathered}
\sum_{t=1}^{T} m(t) \cdot p^{(t)} \leqslant(1+\eta) \sum_{f_{p}} m_{p}(t)+R E\left(p \| p\left(p^{(1)}\right) .\right.
\end{gathered}
$$

MWUM: Mayority of T ckts G... G is an (r-s)-approximation to f

$$
\begin{aligned}
& \text { If } T=\left\langle\frac{2}{\varepsilon^{2}} \log \left(\frac{1}{\mu}\right)\right] \\
& S^{\prime}=O\left(\frac{\varepsilon^{2} S}{\log \left(\frac{1}{4}\right.}\right)
\end{aligned}
$$

$\overline{P r o o f ~ o f ~ Y a o r ~ X O R ~ L e m m a . ~}$
Soppos
F: $\{0,1\}^{n} \rightarrow\{0,1\}$ is $\varepsilon$-weatly hard agams b atts of sige 5 .

$\forall r \in(0,1 / 2)$ IHand.core Set Lemma.
$\exists$ c-hardcoic dist $A$ कn [oril of
$\operatorname{Pr}_{x \leftrightarrow 4}^{\operatorname{Pr}}[C(x)=f(x)] \leq \frac{1}{2}+r \quad \forall C$ of sije
PPoof of xoe Lemmol
t $r \in(0,1 / 2)$ (veeds to le proved).
$f^{(\oplus 1)}:\{0,1]^{n \epsilon} \rightarrow\{0,1\}$
$\left(x_{1}, x_{k}\right) \mapsto \underbrace{+j)}_{c=1} f\left(x_{c}\right)$ is $r+(1-\varepsilon)^{k}$
$c k t_{3}$ of $\operatorname{sing}\left(\frac{r^{2} 5}{\log \left(\frac{1}{8}\right)}\right)$

$\mathrm{C}_{n}$ - uniform dist on $\left\{a\left\rangle^{\rangle}\right.\right.$
$H$ - $\varepsilon$-smooth distributor
$\forall x, \quad H(x) \leq \frac{1}{\varepsilon-2^{n}}$
Define dotribation 6 . on $[0,1]^{n}$

$$
G(x)=\frac{\frac{1}{2^{n}}-\varepsilon H(x)}{1-\varepsilon}=\frac{C_{n}(x)-\varepsilon H(x)}{1-\varepsilon}
$$

le, $U_{n}(x)=\varepsilon \cdot f(x)+(1-\varepsilon) G(x)$.
Quins (1) $\sigma(x) \geqslant 0 \quad f x$ ?
Cequir to $H(x) \leqslant \frac{1}{\varepsilon \cdot 2^{n}}$ )

(2) $\sum_{x} G(x)=1$.
$\left.\operatorname{Csince} \sum H(x)=1=\sum u_{n}(x)=1\right)$
Fence, Frs valid distirbation on $\left\{0, \int^{\eta}\right.$

$$
\left.C_{n}(x)=\varepsilon H(x)+(1-\varepsilon) G(x), \forall x \in \Sigma 0,1\right]^{n}
$$

$U-\left(\varepsilon_{-}+-\varepsilon\right)$ convey combination of the 2 dist FI $=G$.

U-can be generated as follows.

- frest toss a coin Pr [heod $f$ F

$$
P[\text { farlg }]=-E
$$

- If cem=heads, then o/p a sarople from Fl
- othercurse of a sample

How well do cets compate

$$
f\left(x_{1}\right) \oplus f\left(x_{3}\right) \oplus \quad \leftrightarrow \in\left(x_{k}\right) \text { ? }
$$

$k=2:$

$$
P_{\substack{r \\ x_{1}, x_{2} \leftarrow u_{n} \times u_{n}}}\left[C\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus f\left(x_{2}\right)\right]
$$

For any 2 dist $D_{1}, D_{2}$

$$
{\underset{x}{x_{1}, x_{2} \leftarrow D, \times D},}_{P_{2}}\left[\left(x_{1} x_{2}\right)=f\left(x_{1}\right) \oplus f\left(x_{2}\right)\right]=P_{D, D_{2}}
$$

Scppose far contriadiction assume $P_{C, O_{2}} \geqslant \frac{1}{2}+r+(1-\varepsilon)^{2}$

$$
\frac{1}{2}+r+(1-\varepsilon)^{2} \leqslant P_{c_{1}} c_{2}
$$

$$
U_{1}=\varepsilon \mathcal{S}_{1}+(1-\varepsilon) G_{1}
$$

$$
O_{2}=\varepsilon H_{2}+(I \varepsilon) G_{2} .
$$

$$
\begin{aligned}
& P_{C, O_{2}}=P_{E H_{1}+(1-E) \sigma_{1}, \varepsilon H_{2}+(1-E) G_{2}} . \\
& =\varepsilon^{2} P_{H_{1} H_{2}}+\varepsilon(F-\varepsilon) P_{H_{1}, C_{2}}+(T-\varepsilon) \cdot \varepsilon P_{C_{1}, H_{2}} \\
& +(1-c)^{2} P_{C_{1}} C_{2} \\
& \int 0 \text { cam le } \\
& \text { using } H=C \\
& P_{G, C_{L}} \leq 1 \\
& \frac{1}{2}+r+(1-\varepsilon)^{2} \leqslant \varepsilon^{2} P_{H_{1} H_{2}}+\varepsilon(1-\varepsilon) P_{H_{1} O_{I}}+P_{G_{i} \cdot H_{2}} \varepsilon(F-C) \\
& f(F \varepsilon) P_{1} C_{2}^{2} \\
& \frac{1}{2}+r \leqslant \varepsilon^{2} P_{H_{1}} H_{2}+\varepsilon(1-\varepsilon) P_{H_{1}, \sigma_{2}}+\varepsilon(1-\Sigma) P_{\sigma_{1}} H_{2} \\
& \text { Alteast one } P_{A_{1} H_{2}}, P_{F_{r} C_{2}} \text { as } P_{C_{1}} H_{2} \\
& \geqslant \frac{1}{2}+r
\end{aligned}
$$

Assume $\quad P_{A_{1} G_{2}} \geqslant \frac{1}{2}+r$.

$$
\frac{1}{2}+r \leqslant P_{r}^{x_{1}} \quad\left[\left(\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus f\left(x_{2}\right)\right]\right.
$$

$J x_{2} \sim G$. of above is true
Fix that $x_{2}$.

$$
\frac{1}{2}+r \leqslant P_{x}\left[\left(\left(x_{1}, x_{2}\right) \oplus H f\left(x_{2}\right)=f\left(x_{1}\right)\right]\right.
$$

What means the d et $C(x, x) \underbrace{\oplus f(x)}_{\text {con } 8 \text { for } t}$
compute $f$ correctly on $1 /$ w/P $\frac{1}{2}+r$ Cut this contradicts. Hond cone set Lemma).
Our assumption that $C\left(x_{2} \ldots x_{2}\right)$ computes $f\left(x_{6}\right) \oplus f\left(x_{2}\right)$ cop $\geqslant \frac{1}{2}+r+\left(x_{x}\right)^{2}$ 18 false

