Today

Spectral Methods (Part II)
Adjacency Mature

- Wills Theorem
- Hoffman Bd Laplacian
- Drawing Graphs
c55.205. 1
Toolkit in TCS
- Lecture \#21
(Stay 21)
instructor: Prat hladh
Marsha

Spectrum of the Adjacency Matrix
Graph Colouring:
Greedy Algorithm:

1. Order the vertices according to some perm π
2. Stour each vertex (in order acc bx) w/ a colour different from its neighbours that have already been coloured.

chromate \# graph)
π - number ϵ_{π} sit

$$
\begin{aligned}
& \left.E_{\pi}=\underset{a}{\max A\{v \in N(u)} \int \pi(v)<\pi(v)\right\} \\
& \text { - Greedy } X(G) \leq k_{\pi}+1 \text { lift perm } \\
& \pi \text { is chosen) } \\
& x(G)=\min _{\pi}\left(F_{\pi}\right)+1
\end{aligned}
$$

Will show that there is a permutation

$$
\begin{equation*}
\pi \quad \text { of } \quad f_{\pi} \leqslant \mu_{1}, \cdots \tag{*}
\end{equation*}
$$

Theorem: [Wilts Theorem]
$x(\sigma) \leqslant 1 \mu_{0}+1$ /improvement

$$
X(\sigma) \leqslant\left\langle\mu_{1}\right|+1 \quad\left(\begin{array}{l}
\text { improvement } 7 \\
\text { over day } 6 d)
\end{array}\right.
$$

Pf: Suffices to show (*).
Last time: $\mu_{1} \geqslant \max _{\phi \neq S \subseteq v} a_{\text {are }}(G(s))$
Order vertices in reverse as follows

$$
\mu_{1} \geq d_{\text {are }} \Rightarrow J \text { vertex } v . \quad \operatorname{deg}(V) \leqslant \mu_{1}
$$

$\pi:$
Now, for raining vertices. v_{n}

$$
\text { G\\{v. } \quad \mu _ { 1 } \geqslant \operatorname { a r c e } (G [v _ { n }])}
$$

This π satisfies. $k_{\pi} \leqslant \mu$,

Hoffman Bound
Tho: $x(\sigma) \geqslant 1-\frac{\mu_{1}}{\mu_{n}}=\frac{\mu_{1}-\mu_{n}}{-\mu_{n}}$
Today, we call prove the Hoffman bd for d-regalar graphs.
Prove a stronger strut.
Tho: $\alpha(G) \leqslant-\frac{\mu_{n}}{\mu_{n}-\mu_{n}}$ for \&iregalar
fractional size of the largest independent set

$$
\left[\text { G: } x(\sigma) \geqslant \frac{\mu_{1}-\operatorname{sen}_{n}}{-\mu_{n}}\right]
$$

- largest ind set sire

Pf: G - d-regular

$$
\Rightarrow \quad \mu_{1}=d \quad 2 \quad P_{1}=\frac{1}{\sqrt{n}} 11 \quad(n=\# \text { vertical })
$$

Let S be any independent set (say of biggest sire)

$$
|S|=\alpha n .
$$

$f: V \rightarrow \mathbb{R}$
Indicator fr of the set S.

$$
f(v)=\|[v \in S]
$$

View $f \in \mathbb{R}^{2}$

- $f=\sum_{c=1}^{n} f_{i} \varphi_{e} \quad$ Cohere φ_{1} are the orthonormal

$$
-\langle f, A f\rangle=\sum_{(u, v) \in E} f(0) f(v)^{\text {eigen vectors }} \begin{array}{|l}
\\
\text { \& }
\end{array}
$$

$=0$ Cis the indicator of independent sit

$$
\begin{aligned}
A f & =A\left(\sum f_{i} \varphi_{i}\right)=\sum \mu_{i} f_{i} \varphi_{i} \\
\left\langle f_{1} A f\right\rangle & =\left\langle\sum f_{i} \varphi_{i}, \sum \mu_{i} f_{c}, \varphi_{i}\right\rangle \\
& =\sum_{i j} f_{i} \varphi_{i} f_{j}\left\langle\varphi_{i}, \varphi_{j}\right\rangle \\
& =\sum_{i} \mu_{i} f_{i}^{2} \\
0 & =\sum \mu_{i} f_{c}^{2} \\
f_{1} & =\left\langle f_{1} \varphi_{i}\right\rangle=\left\langle f_{1} \frac{1}{\sqrt{n}} \|=\frac{|S|}{\sqrt{n}}=\alpha \sqrt{n} .\right. \\
\langle f, f\rangle & =\sum_{u \in v} f(c) f(0)=|S|=\alpha n .
\end{aligned}
$$

$$
\begin{aligned}
\alpha f f S & =\sum f_{c}^{2} \\
-f_{1} & =\alpha \sqrt{n} \\
-\sum f_{c}^{2} & =\alpha n \\
O & =\sum \mu_{c} f_{c}^{2}=\mu_{c} f_{1}^{2}+\sum_{c=2}^{n} \mu_{c} f_{c}^{2} \\
& \geqslant \mu_{c} \alpha^{2} n+\mu_{n} \sum_{c=2}^{n} f_{c}^{2} \\
& =\mu_{c} \alpha^{2} n+\mu_{n}\left(\sum_{c=r}^{n} f_{c}^{2}-f_{1}^{2}\right) \\
& =\mu_{c} \alpha^{2} n+\mu_{n}\left(\alpha n-\alpha^{2} n\right)
\end{aligned}
$$

Rewritiong $\alpha \leqslant \frac{-\mu_{n}}{\mu_{1}-\mu_{n}}$
The aGove proof works if we replace ady matrux A w/ any other matrix B s.t

$$
B \|=\mathbb{I} \quad \text { \& } \quad B\left(i_{i j}\right)=0 \quad \text { if }\left(i_{j}\right) \notin E
$$

(B-has real ergen spectoum)

$$
\begin{array}{r}
\alpha(G) \leqslant \theta_{H}(G) \triangleq \min _{\mathcal{B}-\Delta y \operatorname{minetic}}\left(\frac{-\lambda_{\min }}{1-\lambda_{\min }}\right) \\
\lambda_{\min }^{B(i j)=0} \text { if }\left(c_{y j}\right) \notin E \\
B \|=\mathbb{H}
\end{array}
$$

Loves) further strengthened.

Laplacian Matrix = Its Spectrum

$$
\begin{aligned}
& L_{G}=D_{G}-A_{C} . \\
& \left\langle x, L_{G} x\right\rangle=\sum_{\left\{u_{1}, r \sim_{D E}\right.}(x(u)-x(v))^{2}
\end{aligned}
$$

Weighted Graph $\left.\sum_{\{u, v] \sim E} \omega(v, v)(x(u)-x(v))\right)^{2}$
Graph cu/ non-negature, L_{6} is a PSD Cigen values $0=\lambda_{1} \leq \lambda_{2}$. $\leqslant \lambda_{n} \in \mathbb{R}$ Cigen vectors $\psi_{1} \ldots \psi_{n} \in \mathbb{R}^{n}$ Least evalue $=$ Corresponding e.vector

$$
\begin{aligned}
\lambda_{1} & =\min _{x \in \mathbb{R}^{2}} \frac{\langle x,\langle x\rangle}{\langle x, x\rangle} \\
& =\min _{x} \frac{\sum_{\{, v\rangle \sim E}(x(u)-x(v))^{2}}{\sum_{u \in V}(x(v))^{2}}
\end{aligned}
$$

$\lambda_{1}=0 \quad$ corresponcting e.vector

$$
P_{1}=\frac{4}{\sqrt{n}} \mathbb{I}
$$

If x is an ergenvector of L_{6} corresponoling to evalce 0 . then x mast be constant on each (comocted) component $\& G$.
Maltiprlicrly of O - ergenvalue

$$
\text { = \# components of } F_{1}
$$

G is connected $\Rightarrow \lambda_{2}>0$.
(λ_{2}-measare of how well the praph is connected)
\rightarrow Cheeger mequalites.

Hall's drawing of graphs:
Crie-dim drawing of graphs.
Goal: Plot the vertices on a straight
line such that if minimizes the sum of squared edge distances.

Formulation: Frond $x: V \rightarrow \mathbb{R}$
sit $\sum_{[u, 2\} \sim E}\left(x\left(u_{i}\right)-x(v)\right)^{2}$ is minimized.

- Q6s:(1) Assume
x is normalized ie

$$
\|x\|^{2}=\langle x, x\rangle=1 .
$$

(2). $1 x=$ canst minimizes.
(not a nice picture)
since all vertices are mopped to sarre pout)
$x \perp 11 \quad(x$ is orthogonal to constant vector).

- (3)

$$
\begin{aligned}
& \min _{x \in R^{2}} \sum_{\text {BMYGE }}(x(2)-x(v))^{2}=\lambda_{2} \\
& x \perp 11 \\
& \langle x, x\rangle=1
\end{aligned}
$$

- corresponding
x is $/ / 2$-second ergen veck.
$W_{2}: V \rightarrow \mathbb{R}$ is "the Gesf" one-dim drawirg.
What about 2-dime

$$
\begin{aligned}
\text { Find } \left.\begin{array}{rl}
x & : V \rightarrow \mathbb{R} \\
y & =V \rightarrow \mathbb{R} \\
(A) & =\sum_{\{[, y)-E}\left[\left(\left[\begin{array}{l}
x(v) \\
y(v)
\end{array}\right)-\binom{x(v)}{y(v)}\right]^{2}\right. \\
& =\sum_{\{u, v] \sim E}\left[\left(x(v)-(x(v))^{2}+G(v)-y(v)\right)^{2}\right]
\end{array}\right]
\end{aligned}
$$

For the same reasons as Cetore

$$
\|x\|^{2}=\|y\|^{2}=1, \quad\langle x,\| \|)=\langle y, \|\rangle=0 .
$$

Best soto $\quad x=y=\psi_{2}$

- degenerale folion drawing.

To prevent, $\quad x \not y . \quad\langle x, y\rangle=0$

This $\left.\begin{array}{rl}x & =\psi_{2} \\ y & =\psi_{3}\end{array}\right\}$ as candidate solons:

Whim: $x_{1} \ldots \quad x_{k}: V \rightarrow \mathbb{R}$ is a $k-d i m$ drawing of the vertices such

$$
\begin{aligned}
& \begin{array}{l}
\text { That } \quad\left\|x_{c}\right\|^{2}=1 \\
-\left\langle x_{i}, x_{i}\right\rangle=0 \quad \forall i \neq j \\
-\left\langle x_{i}, \|\right\rangle=0 \quad \forall i \cdot
\end{array} \\
& \text { then } \sum_{\{i, v\} \in E}^{k}\left(x_{c}(u)-x_{c}(v)\right)^{2} \geqslant \sum_{i=2}^{k+1} \lambda_{j}
\end{aligned}
$$

Spectra of Joy Graphs.

1. Complete Crops $/ \mathrm{h}$

$$
\begin{aligned}
& A_{k_{n}}(1, j)= \begin{cases}1 & \text { if } c \neq j \\
0 & 0 \cdot \omega .\end{cases} \\
& L_{k_{n}}=\text { (Laplacian). } \quad 厶_{k_{n}}\left(c_{i j}\right)= \begin{cases}-1 & \text { if } c \neq p \\
n-1 & \text { f } c=j\end{cases} \\
& L_{n_{n}} \cdot \underline{I}=0 \quad\left(\lambda_{1}=0 ; \quad \psi_{1}=\frac{1}{\sqrt{n}} \boldsymbol{I}\right)
\end{aligned}
$$

$\varphi \perp$ II

$$
\begin{aligned}
\left(L_{k_{n}} \varphi\right)(v) & =(n-1) \varphi(v)-\sum_{u \neq v} \varphi(u) \\
& =(n-1) \varphi(v)+\varphi(v) \\
& =n \varphi(v) .
\end{aligned}
$$

Hence, any $\varphi \perp 1$. is an e.vector c /evalue n.

Lkn: Spectrom: evalue $\left\{\begin{array}{l}0 \\ 0 / \text { malt I } \\ n \\ \omega / \text { malt } n-1\end{array}\right.$
(2) Cycte (Cn)/Ping Craph.

$$
A_{c_{n}}\left(c_{i j}\right)= \begin{cases}1 & \text { if }(c-j)=1(\bmod n) \\ 0 \text { otherwisc. }\end{cases}
$$

$$
\begin{aligned}
& u_{c}-\frac{v_{n}}{u_{c}=\left(\cos \frac{2 \pi_{i}}{n,} \sin \frac{2 \pi_{i}}{n}\right)}
\end{aligned}
$$

$$
u_{i-1}+u_{c+1}=\frac{2 \cos 2 \pi}{n} u_{e} .
$$

$$
\begin{aligned}
& L_{G}=d I-A_{G} \\
& A_{C} \varphi=\lambda \varphi \\
& L_{G} \varphi=(d-\lambda)_{\varphi}
\end{aligned}
$$

$$
\begin{aligned}
& x(i)=\cos \frac{2 \pi i}{n} ; c=0, \ldots n-1 \\
& y(i)=\sin \frac{2 \pi i}{n} ; c=0, \ldots n-1
\end{aligned}
$$

x, y are evectas of $A_{c_{n}}$ w/ e.value. $2 \cos \frac{2 \pi}{n}$.

$$
\begin{aligned}
& x_{k}(i)=\cos \frac{2 \pi k_{i}}{n} ; c=0, \ldots n-1 \\
& y_{k}(i)=\sin \frac{2 \pi k_{i}}{n} ; i=0, \ldots n-1
\end{aligned}
$$

$x_{k}=y_{k}$ are e.veclos of A_{n} wl
e. value $2 \cos \frac{2 \pi k}{n}$

Eigen-spectram $\quad 1 \leqslant k \leqslant n / 2$

