Today

Spectral Metrods (Part III)

- Cayley Graphs
- Spertrum
- Random Walk Matorx
c55.205.1
Toolket in TCS
- Lecture \#22
(7 May 21)
Instractor: Pra hladh Harsha

Cayley Graphs
G-group Cimite set of atements $\omega /$ a binary operation $G=(S, \cdot)$
. $: G \times G \rightarrow G$

$$
a b \mapsto a . b
$$

(1). has an identity ett \exists ee $\sigma, \quad e-a=a \cdot e=a$ taeG
(2) Evieny eff has an miverse $10, \forall a \in C, J b \in G, a b=b a=e$
(3) Associatirety: (a.b).C

$$
=a \cdot(b \cdot c)
$$

If forthermore . Is commatative. then G an Abelan grocp
eq: (s) $G=T / p \mathbb{Z}, \quad \cdot=+$
(2)

$$
\begin{aligned}
G=[0,1]^{n} ; & =+\cdots \times 0 \\
\left(x_{1} \ldots\right. & \left.x_{1}\right)+\left(y_{2} \ldots y_{n}\right) \\
= & \left(x_{1}+y_{1}, \ldots \text { xity }\right) \\
& \text { 乡 xor operation. }
\end{aligned}
$$

Non-Abelcan Groups.
(3)

$$
\left.\begin{array}{c}
G L_{n}(R) \text { - set of non-singactar } \\
\text { nxon maticces a/ } \\
\text { real entrices }
\end{array}\right\}
$$

(4) GLn (TlpZ)
$S \subseteq G$ - set of generators for G if every element $1 n$ can $G e$ obfained by taking etts in S and applying the group opern

$$
\begin{aligned}
\text { eg:(1) } \sigma & =\left(\{0,1\}^{n}+\right) \\
S & =\left\{e_{1}, \ldots \text { en }\right\} \quad c_{c}=(0.100 .)
\end{aligned}
$$

©th location
(2) $G=(\mathbb{Z} / n \mathbb{Z},+)$
n-rateral number.

$$
S=[\square
$$

Tis closed under nverse, II

$$
f_{B} \in S \Rightarrow s^{-1} \in S
$$

Cyck	Boolean	hypercube
C_{n}-ncyck	H_{n}	
$V=2 / n \mathbb{Z}$	$r=\{0,1]^{n}$	
$(a, b) \in E$	$(a, b) \in E$	

If $a=b+1$ if $a=b+c_{c}$. fo some
a)

$$
c \in[n]
$$

$$
b=a+1
$$

Cayley Graph: G-group; S-set of

Tince Srocod conder inverse $(g, g s) \in E \Rightarrow(g S, g) \in E$

$$
\begin{aligned}
& C_{n}=\operatorname{Cay}\left(\left(\mathbb{Z}, r \mathbb{Z}_{1}+\right),\{,-1\}\right) \\
& H_{n}=\operatorname{Cay}\left(\left(\{0, r\}^{n},+y,\left\{\varepsilon_{1} \ldots \cos \right\}\right)\right.
\end{aligned}
$$

Hersenberg Crocp:
$H / s=\left\{\left[\begin{array}{ccc}1 & x & y \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right] / x, y, z \in \mathbb{Z}\right\}$
Group Operation $=+$

$$
\begin{aligned}
& T=\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]\right\} \\
& S=T U T^{-1}
\end{aligned}
$$

Tayter Graphs over Abelian Groups
Character:
$x: G \rightarrow \not \subset$ (compleres)

$$
x\left(g_{1} g_{2}\right)=x\left(g_{1}\right) \cdot x\left(g_{2}\right)
$$

gg: $G=\left(\mathbb{F} / \rho_{z},+\right)$; $x_{k}: G \rightarrow \notin$ p-prome $f_{a}^{a} \rightarrow e_{k=\mathbb{Z}}^{\frac{2 \pi a t}{n}}$

If is $16 /$-dimensional vector space.
Consider the inner product on f

$$
\langle f, h\rangle=\sum_{g \in G} \frac{f(g)}{h(g)} .
$$

Proposition:
(1) $x x^{\prime}$ - character

$$
\Rightarrow \quad x \cdot x^{\prime} \text {-character }
$$

$$
\Rightarrow x^{-1} \text { - character }
$$

(z) $\left.\begin{array}{rl}x_{0}: & \rightarrow \nrightarrow \\ g & \mapsto 1\end{array}\right\}$ Goral character.

Set of characters fir a group.

$$
\begin{aligned}
& G=\left(\{0,1\}^{n},+\right) \quad ; X_{S}: G \rightarrow \phi \\
& \left(x_{1} \ldots x_{n}\right) \leftrightarrow \underset{c \in S}{ } \prod_{c}(-1)^{x_{i}} \\
& S \subseteq[n] \text { (parts } \\
& \mathcal{A}=\{f: G \rightarrow \phi\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{g \in G} x\left(g g^{\prime}\right) \quad \exists g^{\prime} \in G, x\left(g^{\prime} \neq 1\right. \\
& =\sum_{g \in G} x(g) x\left(g^{\prime}\right) \\
& =x\left(g^{\prime}\right) \sum_{g \in G} x(g) \\
& \text { (G) } \\
& \left\langle x, x^{\prime}\right\rangle= \begin{cases}16 / & \text { if } x=x^{\prime} \\
0 & \text { otherwise }\end{cases} \\
& \left\langle x, x^{\prime}\right\rangle=\sum_{g} \overline{x(g)} x^{\prime}(g) \\
& =\sum x^{-1}(g) x^{\prime}(9) \\
& \left.=\sum\left(x^{-1} x^{\prime}\right) \xi g\right) \\
& = \begin{cases}|\sigma| & \text { if } x^{-1} x^{\prime}=\text { gErund } \\
0 & \text { othercorse }\end{cases}
\end{aligned}
$$

Characters are orthogonal
Abelian Group.
Group of characters \approx Group o
Fo Abelian groups
Characters form an arthencimal basis to tr.

Back to Cayley Graph

$$
H=\operatorname{Cay}(6,5) \quad \text { S- bet of genera ter } \begin{aligned}
& \text { of closed under }
\end{aligned}
$$

inverses.
A_{H} - adjacency matrix
x - character.

$$
\left.\begin{array}{rl}
\left(A_{A} x\right)(g) & =\sum_{B \in S} x\left(g^{s}\right)
\end{array}=\sum_{B \in S} x(g) x_{(S)}\right)
$$

Hence x is an eigenvector of G.
co/ eigen value

- Tor any Cayley group on G (irrespective of cuban S)
the set $o f$ erects $=$ set $o f$ characters T x is a ever $g \begin{cases}A_{H} \text { w/ eval } \sum_{\delta \in S} X(s) \\ L H & \omega / \text { evil }(S)-\sum_{s \in S} x(\delta)\end{cases}$

Random Walk Matore

C- undirected (possibly werghted) graph. -non-negative werghts.
Ranobom Walt: From a verter u go to vertex v al prob propertional to

$$
P R O[u \rightarrow v]=\frac{A(u, v)^{A(2}}{\sum_{v \in V} A(u, v)}
$$

- Random Lalk Matrix

$$
\begin{aligned}
D_{G}^{-1} A_{C}(u, v) & =\frac{A_{G}(u, v)}{\operatorname{deg}(v)} \int_{\substack{\text { on } \\
\text { werghtied } \\
\text { greophr }}} \\
& =\operatorname{Pr}[u \rightarrow v]
\end{aligned}
$$

Fo unwerghtited graphs. $W_{C}=P_{G}^{-1} A_{G}$

Ceven for weighted graphs

$$
\begin{gathered}
\operatorname{deg}(r)=\sum_{U \in V} A(r, 0) \\
\operatorname{Pr} \operatorname{cu} \rightarrow r]=\frac{A_{G}(u, v)}{\operatorname{deg}(0)} \\
D_{G}=\operatorname{Drag}(\operatorname{deg}(v))
\end{gathered}
$$

Pandom Lalt Matrix Carising from

$$
W_{G}=\frac{D_{G}^{1} A_{G} \quad \text { a cuerghted }}{} \text { undiracted }
$$

graph)

Q6B: A general random walt

$$
\left.\begin{array}{cc}
W \in \mathbb{R}^{n \times n} & \forall u, v \quad w(0, v) \geqslant 0 \\
\forall u & \sum_{v \in v} w(0, v)=1
\end{array}\right\}
$$

Not all r.a matrices come from werighted undrected gregots.
Reght Multiplication
$W \in \mathbb{R}^{v \times r}$ - ras materex

$$
f: V \rightarrow \mathbb{R} \quad ; f \in \mathbb{R}^{2}
$$

WA - Right multiplication by f

$$
(w f)(u)=\sum_{v \in V} w(u, v) f(v)
$$

Right multiplication - corresponds to averaging arch colt

$$
W \mathbb{I}=\mathbb{I}
$$

re, It is a right eigenvector wal eigen value 1 .

Left Multiplication:

$$
\begin{aligned}
& p: V \rightarrow \mathbb{R} \\
& (p W)(v)=\sum_{u \in V} p(u) W(v, v)
\end{aligned}
$$

Suppose p is a prob. dist on verkces.
(pw) $(v)=$ Prob (RN lands on v when stored acred
to PJ

$$
\rho \underset{i s k_{p}}{\longrightarrow} \rho W \underset{2 \cdots W^{n+k_{p}}}{\longrightarrow} \rho W^{2} \longrightarrow W^{3}
$$

Soppose there exists a prob dist π
le, $\pi=\pi W$
π - stationary destributon
-leff eigenvector of W w/ evalue I
For werghted graphs.

$$
\begin{aligned}
& \pi(V)=\quad \frac{\operatorname{deg}(V)}{\sum_{v \in V} \operatorname{deg}(0)}=\frac{\operatorname{deg}}{\Delta} \\
& \Delta-\text { Total degr. }
\end{aligned}
$$

$$
\operatorname{deg} W=\operatorname{deg}
$$

Tigen Spectrom of Rondom Walte π-loner Product

$$
\langle f, g\rangle_{\pi}=\sum_{r \in r} \pi(r) f(v) g(r)
$$

When is W selt-adjoint under

$$
<, ~ \grave{x}
$$

What is adjoint W^{*} ?

$$
\begin{aligned}
& \left\langle f_{i} N g\right\rangle=\left\langle W^{*} f g\right\rangle, \forall f g \in \mathbb{R}^{r} \\
& f=\left\|\left(v_{1}\right) ; g=\right\|\left(v_{2}\right) \\
& \left\langle f_{1} \mathrm{Ng}\right\rangle=\sum_{v} \pi(v) f(v)(\operatorname{Lrg})(v) \\
& =\pi\left(r_{r}\right) \lg \left(v_{1}\right) \\
& =\pi\left(v_{1}\right) \omega\left(v_{1}, v_{2}\right) \\
& \left\langle\omega^{*} f, g\right\rangle=\pi\left(v_{2}\right)\left(r^{*} f\right)\left(v_{2}\right) \\
& =\pi\left(v_{2}\right) W^{*}\left(v_{2} v_{1}\right)
\end{aligned}
$$

Hence, w^{*} is the matrix

$$
W^{*}\left(r_{2}, v_{1}\right)=\frac{\pi\left(v_{1}\right) W\left(r_{1}, r_{2}\right)}{\pi\left(r_{2}\right)}
$$

random walt matrix cosresp to time-reversal.

$$
p \longmapsto p W
$$

$P=\rho W W^{\star} \longleftarrow \rho W$
If we want W to be self-adyont

$$
\begin{aligned}
W^{*} & =W \cdot \\
W\left(v_{2}, v_{1}\right) & =\frac{\pi\left(v_{1}\right) W\left(v_{1} v_{2}\right)}{\pi v_{2}} \quad \forall v_{1} v_{2}
\end{aligned}
$$

Nicer: $\pi\left(V_{2}\right) W\left(V_{2}, v_{1}\right)=\pi\left(V_{1}\right) W\left(V_{1}, V_{2}\right)$
\longleftrightarrow Detarled Balaonce condition
\rightarrow Reversible Random Walk
Random Walts arrsing from werghted (undrected) Gerephs.

$$
\begin{gathered}
\pi\left(v_{1}\right)=\frac{\operatorname{deg}\left(v_{1}\right)}{\Delta} \quad W\left(v_{1}, v_{2}\right)=\frac{A\left(v_{1}, v_{2}\right)}{\operatorname{deg}\left(v_{r}\right)} \\
\pi\left(v_{1}\right) W\left(v_{1}, v_{2}\right)=\underbrace{\frac{A\left(v_{1}, v_{2}\right)}{\Delta}}_{\text {undirected }}=\pi\left(V_{2}\right) W\left(v_{2}, v_{1}\right)
\end{gathered}
$$

Spectral Thecrem guaranter an orthonormal eigen decomporition
for any selt-adyoint RW matrices (conder π-drst).

RL maturices aririon from werghted undmected graphs are sclf-odpoint
(reversible)
Cdetarled balance).
Eigen de compartion.
$V_{1} \ldots V_{n} \in \mathbb{R}^{n} \omega$ er ergen valaes
ω_{1}. $\quad \omega_{n} \in \mathbb{R}$
Q6s: (1) Il wy e.vake I is a rught e.vectos.
(2) All evalaes have absokat ralue ≤ 1
(3) Il is le right eipenvecto corresponding to 1 w/ lorgest evalae
Prght Eigen space of a

$$
\begin{aligned}
& \mathscr{I}=v_{1}, r_{2} \ldots \\
& I=\omega_{1} \geq \omega_{2} \ldots \quad \geqslant v_{n} \geq-1
\end{aligned}
$$

Leff Eigon Space of W

- Next lectore.

