Today

Polynomial Method

- Reed- Solomon Code

Cniqué decoding.
c55. 205.1 Tooltert in TCS

- Lectare \#29
(2 Jone. '21)
Instructor: Pra hladh Harsha

Plynomial Method:
Maxim: Non-zero univarate poly of deg $\leqslant d$ over a field has at most d roots.

Ceven w/ maltiplicitres)
Non-zero
Cnivarcate
field Ceg: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{p}=\mathbb{T} / \mathbb{T}, \mathbb{F}_{q}$ $\left.\left(q=p^{k}\right)\right)$
Cnot a ring, $R=T / 6 \pi$

$$
p(2)=3 z
$$

Application: Reed-Solomon Codes
Two distinct polynomials PP 9 of deg <k look very different

$$
\#\{\alpha \in \mathbb{F} / p(\alpha)=g(\alpha)\} \leqslant k-1
$$

9

$$
\#\left\{i \in[n] / p\left(\alpha_{c}\right) \neq q\left(\alpha_{c}\right)\right\} \geqslant n-(k-1)
$$

Primer on Codes:

$$
\rho: \sum^{k} \rightarrow \sum_{\text {Ideally, }}^{n} \sum \sum \text {-alphabet }
$$

One-to- One mapping.

$$
\text { Codewords }=\left\{C(x) / x \in \sum^{k}\right]
$$

Distance of cods C : $\Delta(C), d(C)$

$$
\Delta\left(z_{1}, z_{2}\right)=\nexists\left\{\dot{c} \cdot / z_{1}^{(i)} \neq z_{2}^{(a)}\right\} .
$$

$\delta(c)=d(c) / n$. (fractional distance)
Rate of a code C. $(R \triangleq k / n)$
Reed Solomon Codes RS NT, TA
Rate $=k /|s|=k / g$.
Distance $=n-k+1$.
The above distance vo rate tradeaff is the lest one could hope for
Singleton Bound: For any $\mathrm{C}: \sum^{k} \rightarrow \sum^{n}$ col distance d, we hare $d+k \leq n+r$
Obs: RS code achieves Singleton Bound. Any code $d=n+1-k$ is called an MDS code.

Pf: (Singleton Bound).

$$
\begin{aligned}
& \quad \operatorname{Ci} \Sigma^{k} \rightarrow \Sigma^{n} \\
& P \subseteq[n], \quad|p|=t \\
& 1 \leqslant t \leq n \\
& a \in \Sigma^{\epsilon}
\end{aligned}
$$

$$
C \|_{p=a}=\left\{C(x) /\left.C(x)\right|_{p}=a\right\}
$$

Peek $a \in \sum^{t}$ that maximizes $C(p=a /$
This a satisfies. $\left|\sum / p_{=a}\right| \geqslant\left|\sum k / / \sum\right| t$ If fur thesemore
$n-t=d-1$, then $C l / p=a / \leqslant 1$ Cotherwise 2 distort codewords of C disagree $\leqslant d$ locations)

$$
1 \sum 1^{k} /\left(\sum 1^{n-(d-1)} \leqslant 1\right.
$$

$r e, k \leq n-\left(d_{1}\right)$

$$
\Rightarrow k+d \leq n+1
$$

4
RS - Eighty scatter Singleton Bound.
Caveat: Large alphabet; $|\Sigma|=|F| \geqslant|S|$ n"

Let $y: S \rightarrow \mathbb{F}$ Ge any function $=p: S \rightarrow F$ (is a RS coolecucrd
st $\Delta(y, p)=e$ (furors in transmission)
If $c<\frac{n-k+1}{2}$ (halt the distance of) then p can le uniquely recovered from 9 .

Algorithmic Quastion:
Given a $y=S \rightarrow$ F, such that there exists a poly $p: S \rightarrow$ IF of deg < R, satisfying $\quad \Delta(p, y)=e<\frac{n-k t \mid}{2} \quad(n=151)$ then find p efficiently?
eq: Petersen, G0's
Berle tamp. Massey 70 's
Berk tamp - Welch
$y: S \rightarrow \mathbb{F}$ (Grecened word)

$$
\begin{aligned}
& \left.y\left(\alpha_{1}\right) \ldots y\left(\alpha_{n}\right) \quad\left(S=\sum \alpha_{1}, \ldots, \alpha_{n}\right\}\right) \\
& y_{c} \triangleq y\left(\alpha_{r}\right) \\
& E=\left\{i \in\left[\operatorname{Jo} J \mid p\left(\alpha_{c}\right) \neq y_{c}\right\}\right. \text { Error Set } \\
& \left.E(X)=\prod_{c \in E}\left(X-\alpha_{c}\right)\right\} \text { error }
\end{aligned}
$$

Note:
(0) $\left.E\left(\alpha_{i}\right) y_{i}=P\left(\alpha_{i}\right) \cdot E\left(\alpha_{i}\right), \forall i \in \operatorname{n}\right]$
(i) $\operatorname{deg}(E)=e<\frac{n-k+1}{2} / E(x)=\sum_{i=0}^{e} e_{i} x^{i}$.
(ii) $\operatorname{deg}(P E) \leqslant k-1+e \quad / P(x)=\sum_{i=0}^{k-1} \sum^{i} x^{c^{\prime}}$

Instead of finding P i F^{-}st $E\left(\alpha_{c}\right) \cdot y_{i}=y_{p\left(\alpha_{i}\right) E\left(\alpha_{2}\right)}$ oatrofying (0)...(2)
Do the following instead

BW algorithm
Step 1. Find E and Q-plynomiale buch that
c) $E\left(\alpha_{i}\right) \cdot y_{i}=Q\left(\alpha_{c}\right), \forall c \in[\operatorname{lo}]$.
(1) $\operatorname{deg}(E) \leqslant e$
(2) $\operatorname{deg}(a) \leqslant k-1+e$
(3) $\quad E \neq 0$

Step 2: Oatpat Q/E

Step 1 a Step 2 efficrent
To prove correctress. need the following 2 clams
Clam I: Step I frids a non-trival ooln satistying (0), (1) (2), (3)

Claim II: Every (Q, E) non-Givial sotn satisties $Q / E \equiv P$.

$$
e<\frac{n-k+1}{2}
$$

Proof of Clarm I: Sufft to demonstrat a soln that satsones (01, (1), (2), (3)

$$
\left\{\begin{array}{l}
E \triangleq \text { Erros locator pdy } \\
Q=P \cdot E
\end{array}\right.
$$

satisties (0) (1), (2), (3)
Proof of Clam I:
Lef $\left(Q_{1}, F_{1}\right)=\left(Q_{2}, E_{2}\right)$ be 2 non-trival sotns to Step?
We need to show

$$
\frac{Q_{1}}{E_{1}} \equiv \frac{Q_{2}}{E_{2}}
$$

Gquiralently, $Q, E_{2} \equiv Q_{\Sigma} E_{1}$

$$
\begin{aligned}
& \operatorname{deg}\left(Q_{i} \cdot E\right) \leqslant(t-1+e+e=t-1+2 e \\
& \forall c \in[n] \\
& Q_{1}\left(\alpha_{i}\right) E_{2}\left(\alpha_{i}\right)=y_{i} \cdot E_{1}\left(\alpha_{l}\right) \cdot E_{2}\left(\alpha_{c}\right) \\
&=Q_{2}\left(\alpha_{i}\right) E_{1}\left(\alpha_{c}\right)
\end{aligned}
$$

If $n>k-1+2 c$, then $Q_{1} E_{2} \equiv Q_{2} E_{1}$
\cdots Hence $\frac{Q_{1}}{E_{1}} \equiv \frac{Q_{2}}{E_{2}}=P$
Extension of Maxim to Multivariate setting.
Cnivariate Setting:
Let p be a non-zero univarcate poly of dey $s d$ over a held \mathbb{F} $=S \subseteq \mathbb{F}$, then

$$
\underset{\alpha \leftarrow S}{\operatorname{Pr}}[P(\alpha)=0] \leqslant \frac{d}{|\delta|}
$$

Polynomial Identity Lemma (Schwartz- Zopelél Let p be a non-zero m-variate. poly of dey $s d$ over a held IF $\therefore S \subseteq \mathbb{F}$, then

$$
P_{r}\left[P\left(\alpha_{1} \ldots \alpha_{n}\right)=0\right] \leqslant \frac{d}{|\delta|}
$$

Proof: By inductron on m- \#rarralles Base Case:
$m=1$: Maxim for univariate paly.
$m>1$.

$$
p\left(x_{2} \ldots x_{\mathrm{mom}}\right)-\text { non-jero poly }
$$

$$
\text { of total deg } \leq d \text {. }
$$

Aroume alog p depends on some varralle Cothercuise p is a mon-zero constoml 2 that rarralle is x_{n}

$$
\begin{aligned}
& P\left(x_{1} \ldots x_{m}\right)=\sum_{c=0}^{l} P_{i}\left(x_{1} \ldots x_{m-1}\right) x_{m}^{i} \\
& -I \leq l \leq d \quad(P \neq 0) \\
& -\operatorname{deg} P \leq \alpha-l \\
& P_{r}\left[P\left(\alpha_{1} \ldots x_{m}\right)=0\right]
\end{aligned}
$$

$\left(\alpha_{1} \ldots \alpha_{m} k S^{m}\right.$

$$
\begin{aligned}
\leqq P_{r}\left[P_{c}\left(\alpha_{1} \ldots \alpha_{m-1}\right)=0\right]+ & P_{n}\left[P(\bar{\alpha})=0 / P_{\substack{-\neq 0 \\
\neq \alpha_{n}}}\right) \\
& \cdot P_{n}\left[P_{c}\left(\alpha_{1} \ldots \alpha_{n-1}\right) \neq 0\right]
\end{aligned}
$$

$$
\leqslant \frac{d-l}{|S|}+\frac{l}{|S|} \cdot 1=\frac{d}{|S|}
$$

