Today
CS5. 205. 1

VC dimension

- Saeur-Shelah Lemma
- E-nets

Tooltert in TCS

- Lecture \#32
(14 June. '21)
Instructor: Pra hladh Harsha

Recop from last lecture.
(X, Q^{5}) - X-unverse Cnot necessarily finilel

$$
\sum \subseteq 2^{x} \text { family of sets. }
$$

finite $A \subseteq X$.

$$
S / A=\{\operatorname{SN} A / S \in E S
$$

A is shaffered by S if $S / A=2^{A}$
$\begin{aligned} & V C-\operatorname{dim}(\Omega)= \text { maximam sipe of a } \\ & \text { shattered set }\end{aligned}$
Prmal ShaHer Cefficien

$$
\pi_{S}(m)=\max \{|S| /|/ A \subseteq X,|A| \in m\}
$$

Thor all $m \leq \alpha ; \quad \pi$; m) $=2^{m}$

What about $m>d$?

$$
\pi_{i}(m)<2^{m} \text {, Gat is it significantly }
$$ smaller.

Lemma [VC-dimension lemma, Saecir-Shelab]
(x, Ω) - set system al $V C-d i m d$,

$$
\pi_{s}(m) \leq\binom{ m}{\leq d}=\binom{m}{0}+\binom{m}{r}+\ldots+(m)
$$

Pf: (Va Polynomial Method).
Let $A \subseteq X, \quad|A|=m$.
Ambient space $[0,0]^{A} \cong[0,1]^{m}$

$$
\begin{aligned}
& \forall T \in S / A, I_{T} \in[0,1]^{A} \\
& \text {-indicated til of T. } \\
& V=V(Q / A)=\left\{I_{T} / T \in S / A\right\} \\
& F=\{f: V \rightarrow \mathbb{R}\}, \operatorname{dim}(\pi)=N|=|S| /|
\end{aligned}
$$

For each $T \in S / 4$

$$
P_{T}(x)=\prod_{c \in T} x_{i} \prod_{\text {CATT }}\left(1-x_{i}\right)
$$

$T_{1}, T_{2} \in S / A$.

$$
P_{T_{1}}\left(\mathbb{H}_{T_{2}}\right)=\left\{\begin{array}{cc}
1 & \text { if } T_{1}=T_{2} \\
0 & \text { if } T_{1} \neq T_{2}
\end{array}\right.
$$

$$
P_{T}\left(\|_{K_{2}}\right)=\delta\left[T_{1}=T_{2}\right]
$$

Ohs：$\left[P_{T} / T \in S / A\right]$ are linear ty indepencker

$$
\left.\# S P_{T} \mid T \in S / 4\right]=\operatorname{drom}(F) \text {. }
$$

Hence $\left[P_{T} / T E S / A\right]$ form a bors for 7 ．
To complete the proof，we will show that $\forall T$

$$
P_{T} \in \operatorname{Span}\left\{x_{I} / I \subseteq A ;|I| \leq d\right\}
$$

then， $\mathcal{F} \leq \operatorname{Span}\left\{x_{I}|I \subseteq A,|I| \leq d\}\right.$

$$
\begin{aligned}
& |S / A|=\operatorname{dim} F \leq(\leq d) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& q_{B}(x)=\prod_{J \in B} x_{j} \prod_{J \in I_{B}}\left(1-x_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \forall f \in エ B ン J \notin T
\end{aligned}
$$

Hence $t I_{T} \in V, \quad q_{B}\left(I_{T}\right)=0$.
Hence $P_{B} V_{V}=0$

$$
\begin{aligned}
& \prod_{d \in B} x_{j \in I V B}\left(1-x_{j}\right)=0 \text { for all } x \in V \\
& \prod_{c \in I}=x_{i}=\text { sums of lower deg monomrats fo all } x \in V .
\end{aligned}
$$

Hence, every $f \in \mathscr{A}$ can $l e$ written as a sum of monomials of degree Hence $|S / A|=\operatorname{drm} \pi \leq(m)$

Epsilon-Nets (E-nets)
(X,S)- set system. X - finite
$\mu: x \rightarrow[0,1]: \quad \sum_{x \in x} \mu(x)=1$
Nonet $A \subseteq X$ - A has a representative from every heavy set
Formally
$A \subseteq X$, is an sennet fo S if

$$
\forall S \in S \quad \mu(S) \geqslant \varepsilon \Rightarrow \operatorname{Sn} A \neq \varnothing
$$

$$
\text { when } \mu(S)=\sum_{x \in S} \mu(x)
$$

En. Do there exist small Enacts?
Weak e-net Theorem:
For any set system $(x, 5)=$ prob. measure $\mu=\varepsilon \in(0,1)$, there exists an ene A of size $\leq \frac{1}{\varepsilon} \ln |E|$

Pf: Construct a set $A \subseteq X$
By prating t elements for x independently arg to dist (w/ repetitions, A-multset)

$$
\begin{aligned}
& S \in S, \mu(S) \geqslant \varepsilon . \\
& \operatorname{Pan}_{A}[S \cap A=\phi] \leqslant(1-\varepsilon)^{t} \leqslant e^{-\varepsilon t} \\
& P_{A}[\exists S, \mu(S) \geqslant \varepsilon, \quad S \cap A=\phi]<|\alpha| \cdot e^{\text {-et }} \\
& s 1 \text { if } \epsilon=\frac{1}{\varepsilon} \ln |S|
\end{aligned}
$$

le, $\operatorname{Pr}[A$ is not an sennet $]<1$ Hence J s-net A of sire $t=\left[\left.\frac{1}{\varepsilon} \ln |\alpha| \right\rvert\,\right.$
-
Can there Ge smaller sized E-nets? $Y E S$, if $v \in d m(2)$ is small.

Theorem [E-net theorem] \& $d>1,(x, S)$ - set system w/ $V C-d \mathrm{~m}$ $=d$. $=\mu$-prob dist on $x \quad \varepsilon \in \in(0,1)$. then \exists an erect A of 5 of sine

$$
|A| \leq \frac{d}{\varepsilon}\left(\ln \frac{1}{\varepsilon}+2 \ln \ln \frac{1}{\varepsilon}+6\right) .
$$

Pf. A-pick t clements from x independently according to u.

$$
E=\underset{A}{\operatorname{Pr}}[\exists S E Q, \mu(S) \geqslant \varepsilon=A \cap S=\varnothing]
$$

B - prick ($T-\epsilon$) elements from x independently according to μ.

Fix an $S \in S_{1} \mu(S) \geqslant \varepsilon$.
m_{s} - median of the number af elements
re, m-integer oft.

$$
\begin{aligned}
& \left.P_{B}\left[|B \cap S|<m_{g}\right] \leq \frac{1}{2} \leq P_{B}|B \cap S| \geqslant m_{S}\right] \\
& { }_{B}[|B \cap S|]=(T-G) \operatorname{pe}(S) \\
& \text { (counting w/ malt) }
\end{aligned}
$$

$|B \cap S| \sim$ Binomial $(T-t, \mu(s))$

$$
\begin{aligned}
m_{s}=\text { median } & \geqslant \text { mean }-1 \\
& =(T-t) \mu(S)-1 \\
& \geqslant(T-t) \varepsilon-1
\end{aligned}
$$

$$
\begin{aligned}
& \left.E=\operatorname{Pr}_{a} \angle \mathcal{J} \in S, \mu(S) \geqslant \varepsilon, \quad|\operatorname{Sn} A|=0\right] \\
& \geqslant \underset{A, B}{P}[J S \in S, \mu(S) \geqslant \varepsilon,|S \cap A|=0 \\
& \left.|\operatorname{SOB}| \geqslant m_{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.=|5 \cap B| \geq r_{3}\right]
\end{aligned}
$$

$$
\leq 2 \cdot P_{A, B} \mathcal{J} S \in S, \mu(S) \geqslant \varepsilon,
$$

$$
|S \cap A|=0
$$

$$
\left.|S \cap B| \geqslant m_{3}\right] .
$$

Tx $S \in S$. $\mu(S) \geqslant \varepsilon$.

$$
\underset{A, B}{P}[|\sin A|=0 ;|\sin | \geqslant m]
$$

Change the experiment as follows,
frost pick C - Telements.
st $|C \cap S| \geqslant m_{s}$
, then set $\left.\begin{array}{r}A \leftarrow\binom{C}{t} \\ B\end{array}\right\}$
Let us suppose we have picked C of $/ C \cap s) \geqslant m_{s}$.

$$
\begin{aligned}
& \underset{A B, C}{P_{R}}\left[|A \cap S|=0,|B \cap S| \geqslant \operatorname{mog}_{3} /|C \cap S| \geqslant m_{B}\right] \\
& \left.P_{A, B, C}<|A \cap S|=0 \quad| | C \cap S \mid=B\right]
\end{aligned}
$$

$$
=\frac{\binom{T-k}{t}}{\binom{T}{t}}
$$

where $k \geqslant m_{s}$

$$
\begin{aligned}
& =\frac{t!(T-\epsilon)!(T-k)!}{T!t!(T-k-t)!} \\
& =\frac{\binom{T-t}{k}}{\binom{T}{k}}=\frac{(T-t)(T-t-1) \ldots(T-t-1)}{T(T-r) \ldots(T-(k+1)} \\
& \leqslant\left(1-\frac{t}{T}\right)^{k} \leqslant\left(1-\frac{t}{T}\right)^{m_{s}} \\
& \operatorname{Cin}_{A, B}\left[A \cap S=\phi, \quad B \cap S \geqslant m_{s} / \subset \cap S \geqslant m_{s}\right] \\
& \leq\left(1-\frac{t}{T}\right)^{m_{3}} \\
& \leq\left(1-\frac{t}{r}\right)^{m} \\
& m_{s}=\min _{s-h 60 y} m_{s} \\
& \geqslant(t-\epsilon) \varepsilon-1
\end{aligned}
$$

Due to Saeur. Shelat Lemma, the
\# g intersection patterns of $\left(a / a_{r}^{5} \leq\left(E_{d}^{\top}\right)\right.$ $\operatorname{Pr}(J S, \mu(s) \geqslant \varepsilon, \quad A \cap s=\neq B \cap S \geqslant m /$

$$
\leqq\left(1-\frac{t}{T}\right)^{m} \sum_{c=0}^{d}\left(\frac{T}{i}\right) \ldots \alpha .
$$

If $\alpha<1$ then we are done
If

$$
\begin{aligned}
& t=\left[\frac{d}{\varepsilon}\left(\ln \frac{1}{\varepsilon}+2 \log \operatorname{lon} \frac{1}{\varepsilon}+6\right)\right] \\
& T=\left[\frac{\varepsilon}{d} \epsilon^{2}\right], \text { then } \quad \alpha<1
\end{aligned}
$$

Role of VC-dimension in Boosting.
X - universe.
H - class of Bodeon frs on X. P- dist on $x \times\{0,1\}$
h - hypothesis.
Generalization Error of h :

$$
\begin{aligned}
S=\left\{\left(x_{1}, y_{1}\right) \ldots\right. & & \left.\left(x_{1}, y_{r}\right)\right\} \\
& \left(x_{1} y_{c}\right) & \sim \mu_{i} . \text { (independen ti) }
\end{aligned}
$$

Empirical Error of han s.

$$
\hat{\varepsilon_{k}}=\frac{\left.\sum \in \in[N] / h\left(\alpha_{i}\right) \notin \mathcal{H}_{c}\right]}{N}
$$

Thererem (Vapnik)?
H - sel of typotheses ay $K \in d i m \leq d$. then $\forall \delta$.
$\operatorname{Pr}(J h \in H,|\hat{\varepsilon}(h)-\varepsilon(h)|>$

$$
\left.2 \sqrt{\frac{\alpha \ln \left(\frac{2 N}{2 x}\right)+\ln \left(\frac{g}{8}\right)}{a}}\right]=\delta
$$

Ht clasi of hypotheses.
$\theta_{T}(A)$ - class of trypotheses a/p by a T-round Goosting alg.

$$
\begin{aligned}
V C \operatorname{dim}(H) \leqslant d & \Rightarrow V \subset d m\left(\theta_{\Gamma}(A)\right) \\
& \leq 2(d+1)(T+1) \log _{2}(e(T+1))
\end{aligned}
$$

