(1) Please take time to write clear and concise solutions. You are STRONGLY encouraged to submit ETEXed solutions by email. (2) Collaboration is OK, but please write your answers yourself, and include in your answers the names of EVERYONE you collaborated with and ALL references other than class notes you consulted.

1. (5 points) $\mathbf{E}\left[X^{2}\right]$ is assumed to be well defined for all random variables X appearing in this problem. Prove the following:
(a) (1 points) $\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{1 \leq i \neq j \leq n} \operatorname{Cov}\left[X_{i}, X_{j}\right]$.
(b) (1 point) $\operatorname{Var}[X]=\frac{1}{2} \mathrm{E}\left[(X-Y)^{2}\right]$, where Y is independent of X and has distribution identical to X.
(c) (1 point) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is α-Lipschitz (i.e., $|f(x)-f(y)| \leq \alpha|x-y|$ for all $x, y \in \mathbb{R}$) then

$$
\operatorname{Var}[f(X)] \leq \alpha^{2} \operatorname{Var}[X]
$$

(d) (2 points) [Bunyakovsky-Cauchy-Schwarz inequality] $\mathrm{E}[|X Y|]^{2} \leq \mathrm{E}\left[X^{2}\right] \cdot \mathrm{E}\left[Y^{2}\right]$.
2. (5 points) Let X be a non-negative random variable with finite second moment $\mathbf{E}\left[X^{2}\right]$. We denote by $\mathbf{I}[Z]$ the indicator random variable for event Z, so that $\mathbf{E}[\mathrm{I}[Z]]=\mathbf{P}[Z]$ for any event Z. Let $\alpha \in(0,1)$ be a fixed real number, and let $\mu=E X$.
(a) (0 points) Show that $\mathrm{E}[X \cdot \mathbf{I}[X \leq \alpha \mu]] \leq \alpha \mu$.
(b) (1 points) Show that $\mathbf{E}[X \cdot \mathbf{I}[X>\alpha \mu]]^{2} \leq \mathbf{E}\left[X^{2}\right] \mathbf{P}[X>\alpha \mu]$.
(c) (1 point) [Paley-Zygmund inequality] Show therefore that

$$
\mathbf{P}[X>\alpha \mu] \geq(1-\alpha)^{2} \frac{\mathbf{E}[X]^{2}}{\mathbf{E}\left[X^{2}\right]}
$$

(d) (3 points) Let $X_{1}, X_{2}, \ldots X_{n}$ be 4-wise independent uniformly distributed Rademacher variables (i.e., each X_{i} is uniformly distributed in $\left.\{+1,-1\}\right)$. Let $S=\sum_{i=1}^{n} X_{i}$. Show that for $\alpha \in(0,1)$

$$
\mathbf{P}[|S|>\alpha \sqrt{n}] \geq\left(1-\alpha^{2}\right)^{2} \cdot \frac{n}{3 n-2} \geq \frac{\left(1-\alpha^{2}\right)^{2}}{3}
$$

Inequalities like the above are known as small ball bounds (and sometimes also as anti-concentration bounds). In contrast to concentration inequalities, they put an upper bound on the probability that S is in a "small ball" around its expectation. Such bounds are very important in many areas of mathematics, e.g. in the study of random matrices.
3. (5 points) Let $Y_{0}, Y_{1}, \ldots Y_{n}$ be a sequence of random variables taking value in some set \mathcal{Y}. A sequence $X_{1}, X_{2}, \ldots, X_{n}$ of random variables is said to be a martingale ${ }^{1}$ with respect to the sequence Y if there is a sequence of deterministic functions $f_{1}, f_{2}, \ldots, f_{n}$ such that $X_{i}=f_{i}\left(Y_{0}, Y_{1}, \ldots, Y_{i}\right)$, and further

$$
\mathrm{E}\left[X_{i+1} \mid Y_{0}, \ldots, Y_{i}\right]=X_{i} \quad \forall i \geq 0
$$

Let us suppose that this martingale has the bounded difference property: there exists a deterministic sequence of constants $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
\left|X_{i}-X_{i-1}\right| \leq c_{i} \quad \forall i \geq 1
$$

[^0](a) (3 points) Show that for any $\lambda \geq 0$,
$$
\log \mathrm{E}\left[\exp \left(\lambda\left(X_{i}-X_{i-1}\right)\right) \mid Y_{0}, \ldots Y_{i-1}\right] \leq \frac{\lambda^{2} c_{i}^{2}}{2}
$$
(b) (2 points) [Hoeffding-Azuma inequality] Show therefore that
$$
\mathbf{P}\left[\left|X_{n}-X_{0}\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right) .
$$
4. (5 points) Let X be a random variable satisfying $E[\exp (\lambda|X|)] \leq \exp \left(\lambda^{2} v / 2\right)$ for a fixed positive v and all real λ.
(a) (2 points) Show that there exist absolute constants C_{1} and C_{2} such that for all positive $\lambda \leq \frac{C_{1}}{v}$, the random variable $Z:=X^{2}$ satisfies
$$
\mathbf{E}[\exp (\lambda Z)] \leq \exp \left(C_{2} \cdot v \cdot \lambda\right)
$$
(b) (3 point) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. copies of X, and let X denote the n-dimensional vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Use the above to show that for any $t>C_{2} v$,
$$
\mathbf{P}\left[\|\mathbf{X}\|_{2}>\sqrt{n t}\right] \leq \exp \left(-\frac{C_{1}\left(t-C_{2} v\right)}{v} \cdot n\right)
$$
5. (5 points) [Count-Min sketch, Cormode and Muthukrishnan, 2005] Consider the problem of estimating the frequency counts of individual elements in a data stream (in class, we looked at the AMS algorithm which estimates the sum of squares of these frequency counts). Let M be the number of different types of elements, as in the case of AMS. Let \mathcal{H} be a family of hash functions mapping [M] to [k] ($k \geq 2$), such that if a function h is chosen uniformly at random from \mathcal{H} then for all $i \neq j \in[M]$ and $a, b \in[k]$,
$$
\mathbf{P}_{h \sim \operatorname{Uniform}(\mathcal{H})}[h(i)=a \wedge h(j)=b]=\frac{1}{k^{2}} .
$$
(Such a hash family is called 2-universal).
Consider now the following algorithm for this problem. At the beginning of the algorithm, we sample independently s functions $h_{1}, h_{2}, \ldots, h_{s}$ from \mathcal{H}, and initialize all entries of an $s \times k$ array C to 0 .
Now, whenever a new element e arrives, we increment the entries $C\left(i, h_{i}(e)\right), 1 \leq i \leq s$, by one. On being queried the frequency of item e at any point, we output $D_{e}:=\frac{k}{k-1} \cdot \min \left\{C\left(j, h_{j}(e)\right) \mid 1 \leq j \leq s\right\}$.
(a) (3 points) Suppose that at some given time, the number of times the element e has been seen is F_{e}, and the total number of elements seen so far is F. Show that at such a time,
$$
\mathbf{E}\left[C\left(j, h_{j}(e)\right)\right]=\left(1-\frac{1}{k}\right) F_{e}+\frac{F}{k} \text { for } 1 \leq j \leq s
$$

Note that the only randomness here is in the choice of the function h_{j} which is sampled uniformly at random from \mathcal{H}.
(b) (1 point) Show that $D_{e} \geq F_{e}$. Show also that at any given time,

$$
\mathbf{P}\left[D_{e} \geq(1+\epsilon) F_{e}+\frac{(1+\epsilon)}{k-1} F\right] \leq(1+\epsilon)^{-s}
$$

(c) (1 point) Suppose that the total number of items seen over the run of the algorithm is n. Let a positive $\epsilon<1$ be fixed. Show that if we choose $k \geq 2+1 / \epsilon$ and $s \geq(2 / \epsilon) \log (M n / \delta)$, then with probability at least $1-\delta$, we have $0 \leq D_{e}-F_{e} \leq 2 \epsilon F$ for all $e \in M$ and at all time-steps $t \in[n]$.

[^0]: ${ }^{1}$ Martingales can be defined in more generality, but this form of the definition is usually sufficient for algorithmic applications.

