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Toolkit for TCS Feb-June 2021

HW 1: Preliminaries and miscellaneous topics

Out: February 22, 2021 Due: March 8, 2021

(1) Please take time to write clear and concise solutions. You are strongly encouraged to submit LATEXed solutions

by email. (2) Collaboration is OK, but please write your answers yourself, and include in your answers the names of

everyone you collaborated with and all references other than class notes you consulted.

1. (5 points) E
[
- 2] is assumed to be well de�ned for all random variables- appearing in this problem. Prove

the following:

(a) (1 points) Var
[∑=

8=1-8
]
=

∑=
8=1 Var [-8 ] +

∑
1≤8≠9≤= Cov

[
-8 , - 9

]
.

(b) (1 point) Var [- ] = 1
2E

[
(- − . )2

]
, where . is independent of - and has distribution identical to - .

(c) (1 point) If 5 : R→ R is U-Lipschitz (i.e., |5 (G) − 5 (~) | ≤ U |G − ~ | for all G,~ ∈ R) then

Var [5 (- )] ≤ U2Var [- ] .

(d) (2 points) [Bunyakovsky-Cauchy-Schwarz inequality] E [|-. |]2 ≤ E
[
- 2] · E [

. 2] .

Hint:Itmighthelptoconsiderthefunction5(C)··=E[(|-|−C|.|)2].

2. (5 points) Let - be a non-negative random variable with �nite second moment E
[
- 2] . We denote by I[/ ]

the indicator random variable for event / , so that E [I[/ ]] = P [/ ] for any event / . Let U ∈ (0, 1) be a
�xed real number, and let ` = �- .

(a) (0 points) Show that E [- · I[- ≤ U`]] ≤ U`.
(b) (1 points) Show that E [- · I[- > U`]]2 ≤ E

[
- 2] P [- > U`] .

(c) (1 point) [Paley-Zygmund inequality] Show therefore that

P [- > U`] ≥ (1 − U)2 E [- ]
2

E [- 2] .

(d) (3 points) Let -1, -2, . . . -= be 4-wise independent uniformly distributed Rademacher variables (i.e.,
each -8 is uniformly distributed in {+1,−1}). Let ( =

∑=
8=1-8 . Show that for U ∈ (0, 1)

P
[
|( | > U

√
=
]
≥ (1 − U2)2 · =

3= − 2 ≥
(1 − U2)2

3
.

Inequalities like the above are known as small ball bounds (and sometimes also as anti-concentration
bounds). In contrast to concentration inequalities, they put an upper bound on the probability that (
is in a “small ball” around its expectation. Such bounds are very important in many areas of mathe-
matics, e.g. in the study of random matrices.

3. (5 points) Let .0, .1, . . . .= be a sequence of random variables taking value in some set Y. A sequence
-1, -2, . . . , -= of random variables is said to be a martingale

1 with respect to the sequence . if there is a
sequence of deterministic functions 51, 52, . . . , 5= such that -8 = 58 (.0, .1, . . . , .8 ), and further

E [-8+1 | .0, . . . , .8 ] = -8 ∀8 ≥ 0.

Let us suppose that this martingale has the bounded di�erence property: there exists a deterministic se-
quence of constants 21, 22, . . . , 2= such that

|-8 − -8−1 | ≤ 28 ∀8 ≥ 1.
1Martingales can be de�ned in more generality, but this form of the de�nition is usually su�cient for algorithmic applications.
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(a) (3 points) Show that for any _ ≥ 0,

logE [exp (_(-8 − -8−1)) | .0, . . . .8−1] ≤
_2228
2
.

(b) (2 points) [Hoe�ding-Azuma inequality] Show therefore that

P [|-= − -0 | ≥ C] ≤ 2 exp
(
− C2

2
∑=
8=1 2

2
8

)
.

4. (5 points) Let - be a random variable satisfying E [exp(_ |- |)] ≤ exp(_2a/2) for a �xed positive a and all
real _.

(a) (2 points) Show that there exist absolute constants �1 and �2 such that for all positive _ ≤ �1
a

, the
random variable / ··= - 2 satis�es

E [exp(_/ )] ≤ exp(�2 · a · _).

(b) (3 point) Suppose that -1, -2, . . . , -= are i.i.d. copies of - , and let X denote the =-dimensional vector
(-1, -2, . . . , -=). Use the above to show that for any C > �2a ,

P
[
‖X‖2 >

√
=C

]
≤ exp

(
−�1 (C −�2a)

a
· =

)
.

5. (5 points) [Count-Min sketch, Cormode and Muthukrishnan, 2005] Consider the problem of es-
timating the frequency counts of individual elements in a data stream (in class, we looked at the AMS
algorithm which estimates the sum of squares of these frequency counts). Let " be the number of dif-
ferent types of elements, as in the case of AMS. LetH be a family of hash functions mapping ["] to [:]
(: ≥ 2), such that if a function ℎ is chosen uniformly at random from H then for all 8 ≠ 9 ∈ ["] and
0, 1 ∈ [:],

Pℎ∼Uniform(H) [ℎ(8) = 0 ∧ ℎ( 9) = 1] =
1
:2
.

(Such a hash family is called 2-universal).
Consider now the following algorithm for this problem. At the beginning of the algorithm, we sample
independently B functions ℎ1, ℎ2, . . . , ℎB fromH , and initialize all entries of an B × : array � to 0.
Now, whenever a new element 4 arrives, we increment the entries� (8, ℎ8 (4)), 1 ≤ 8 ≤ B , by one. On being
queried the frequency of item 4 at any point, we output �4 ··= :

:−1 ·min
{
� ( 9, ℎ 9 (4)) | 1 ≤ 9 ≤ B

}
.

(a) (3 points) Suppose that at some given time, the number of times the element 4 has been seen is �4 ,
and the total number of elements seen so far is � . Show that at such a time,

E
[
� ( 9, ℎ 9 (4))

]
=

(
1 − 1

:

)
�4 +

�

:
for 1 ≤ 9 ≤ B .

Note that the only randomness here is in the choice of the function ℎ 9 which is sampled uniformly
at random fromH .

(b) (1 point) Show that �4 ≥ �4 . Show also that at any given time,

P
[
�4 ≥ (1 + n)�4 +

(1 + n)
: − 1 �

]
≤ (1 + n)−B .

(c) (1 point) Suppose that the total number of items seen over the run of the algorithm is =. Let a positive
n < 1 be �xed. Show that if we choose : ≥ 2 + 1/n and B ≥ (2/n) log("=/X), then with probability
at least 1 − X , we have 0 ≤ �4 − �4 ≤ 2n� for all 4 ∈ " and at all time-steps C ∈ [=].


