Toolkit for TCS		Feb-June 2021
	HW 1: Preliminaries and miscellaneous topics	
Out: February 22, 2021		Due: March 8, 2021

- 1. (5 points) $\mathbb{E}[X^2]$ is assumed to be well defined for all random variables *X* appearing in this problem. Prove the following:
 - (a) (1 points) $\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right] + \sum_{1 \le i \ne j \le n} \operatorname{Cov}\left[X_{i}, X_{j}\right]$.
 - (b) (1 point) Var $[X] = \frac{1}{2} E \left[(X Y)^2 \right]$, where *Y* is independent of *X* and has distribution identical to *X*.
 - (c) (1 point) If $f : \mathbb{R} \to \mathbb{R}$ is α -Lipschitz (i.e., $|f(x) f(y)| \le \alpha |x y|$ for all $x, y \in \mathbb{R}$) then

$$\operatorname{Var}\left[f(X)\right] \le \alpha^2 \operatorname{Var}\left[X\right].$$

(d) (2 points) [Bunyakovsky-Cauchy-Schwarz inequality] $E[|XY|]^2 \le E[X^2] \cdot E[Y^2]$.

Hint: It might help to consider the function $f(t) = E[(|X| - t|X|)^2]$.

- 2. (5 points) Let *X* be a non-negative random variable with finite second moment $\mathbb{E}[X^2]$. We denote by $\mathbb{I}[Z]$ the indicator random variable for event *Z*, so that $\mathbb{E}[\mathbb{I}[Z]] = \mathbb{P}[Z]$ for any event *Z*. Let $\alpha \in (0, 1)$ be a fixed real number, and let $\mu = EX$.
 - (a) (0 points) Show that $\mathbf{E} [X \cdot \mathbf{I}[X \leq \alpha \mu]] \leq \alpha \mu$.
 - (b) (1 points) Show that $\mathbf{E} \left[X \cdot \mathbf{I} [X > \alpha \mu] \right]^2 \le \mathbf{E} \left[X^2 \right] \mathbf{P} \left[X > \alpha \mu \right]$.
 - (c) (1 point) [Paley-Zygmund inequality] Show therefore that

$$\mathbf{P}\left[X > \alpha \mu\right] \ge (1 - \alpha)^2 \frac{\mathbf{E}\left[X\right]^2}{\mathbf{E}\left[X^2\right]}.$$

(d) (3 points) Let $X_1, X_2, ..., X_n$ be 4-wise independent uniformly distributed Rademacher variables (i.e., each X_i is uniformly distributed in $\{+1, -1\}$). Let $S = \sum_{i=1}^n X_i$. Show that for $\alpha \in (0, 1)$

$$\mathbf{P}\left[|S| > \alpha \sqrt{n}\right] \ge (1 - \alpha^2)^2 \cdot \frac{n}{3n - 2} \ge \frac{(1 - \alpha^2)^2}{3}$$

Inequalities like the above are known as *small ball* bounds (and sometimes also as *anti-concentration* bounds). In contrast to concentration inequalities, they put an *upper bound* on the probability that *S* is in a "small ball" around its expectation. Such bounds are very important in many areas of mathematics, e.g. in the study of random matrices.

3. (5 points) Let Y_0, Y_1, \ldots, Y_n be a sequence of random variables taking value in some set \mathcal{Y} . A sequence X_1, X_2, \ldots, X_n of random variables is said to be a *martingale*¹ with respect to the sequence Y if there is a sequence of deterministic functions f_1, f_2, \ldots, f_n such that $X_i = f_i(Y_0, Y_1, \ldots, Y_i)$, and further

$$\mathbf{E}\left[X_{i+1} \mid Y_0, \dots, Y_i\right] = X_i \qquad \forall i \ge 0.$$

Let us suppose that this martingale has the *bounded difference property*: there exists a deterministic sequence of constants c_1, c_2, \ldots, c_n such that

$$|X_i - X_{i-1}| \le c_i \quad \forall i \ge 1.$$

¹Martingales can be defined in more generality, but this form of the definition is usually sufficient for algorithmic applications.

(a) (3 points) Show that for any $\lambda \ge 0$,

$$\log \mathbf{E} \left[\exp \left(\lambda (X_i - X_{i-1}) \right) \mid Y_0, \dots Y_{i-1} \right] \leq \frac{\lambda^2 c_i^2}{2}.$$

(b) (2 points) [Hoeffding-Azuma inequality] Show therefore that

$$\mathbf{P}[|X_n - X_0| \ge t] \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^n c_i^2}\right).$$

- 4. (5 points) Let X be a random variable satisfying $\mathbb{E}\left[\exp(\lambda |X|)\right] \le \exp(\lambda^2 \nu/2)$ for a fixed positive ν and all real λ .
 - (a) (2 points) Show that there exist absolute constants C_1 and C_2 such that for all positive $\lambda \leq \frac{C_1}{\nu}$, the random variable $Z := X^2$ satisfies

$$\mathbf{E}\left[\exp(\lambda Z)\right] \leq \exp(C_2 \cdot v \cdot \lambda).$$

(b) (3 point) Suppose that $X_1, X_2, ..., X_n$ are i.i.d. copies of X, and let X denote the *n*-dimensional vector $(X_1, X_2, ..., X_n)$. Use the above to show that for any $t > C_2 \nu$,

$$\mathbf{P}\left[\|\mathbf{X}\|_{2} > \sqrt{nt}\right] \le \exp\left(-\frac{C_{1}(t-C_{2}\nu)}{\nu} \cdot n\right).$$

5. (5 points) [COUNT-MIN sketch, Cormode and Muthukrishnan, 2005] Consider the problem of estimating the frequency counts of individual elements in a data stream (in class, we looked at the AMS algorithm which estimates the sum of squares of these frequency counts). Let M be the number of different types of elements, as in the case of AMS. Let \mathcal{H} be a family of hash functions mapping [M] to [k] $(k \ge 2)$, such that if a function h is chosen uniformly at random from \mathcal{H} then for all $i \ne j \in [M]$ and $a, b \in [k]$,

$$\mathbf{P}_{h\sim \text{Uniform}(\mathcal{H})}\left[h(i)=a\wedge h(j)=b\right]=\frac{1}{k^2}.$$

(Such a hash family is called 2-universal).

Consider now the following algorithm for this problem. At the beginning of the algorithm, we sample independently *s* functions h_1, h_2, \ldots, h_s from \mathcal{H} , and initialize all entries of an $s \times k$ array *C* to 0.

Now, whenever a new element *e* arrives, we increment the entries $C(i, h_i(e)), 1 \le i \le s$, by one. On being queried the frequency of item *e* at any point, we output $D_e := \frac{k}{k-1} \cdot \min \{C(j, h_j(e)) \mid 1 \le j \le s\}$.

(a) (3 points) Suppose that at some given time, the number of times the element e has been seen is F_e , and the total number of elements seen so far is F. Show that at such a time,

$$\mathbf{E}\left[C(j,h_j(e))\right] = \left(1 - \frac{1}{k}\right)F_e + \frac{F}{k} \text{ for } 1 \le j \le s.$$

Note that the only randomness here is in the choice of the function h_j which is sampled uniformly at random from \mathcal{H} .

(b) (1 point) Show that $D_e \ge F_e$. Show also that at any given time,

$$\mathbf{P}\left[D_e \ge (1+\epsilon)F_e + \frac{(1+\epsilon)}{k-1}F\right] \le (1+\epsilon)^{-s}.$$

(c) (1 point) Suppose that the total number of items seen over the run of the algorithm is *n*. Let a positive $\epsilon < 1$ be fixed. Show that if we choose $k \ge 2 + 1/\epsilon$ and $s \ge (2/\epsilon) \log(Mn/\delta)$, then with probability at least $1 - \delta$, we have $0 \le D_e - F_e \le 2\epsilon F$ for all $e \in M$ and at all time-steps $t \in [n]$.