Today

- Aldministrivia
- Introduction
- Power of Pandomness
(examples)

CSS. 413.1
Peudorandomness
Lecture ol (2021-08-24)
Inotructor: Prahladh Harsha.

Adminestrivia
Acadly, Webpage
\%-Thars - 09:30-11:00
Grading Policy: 4 problem sets.
Tostroduction:
Randomness: (1) Io it aseful?

- Algoriftimic Design
- Gryptography
- Combinatorial Constrecicions
(2) Does Prandomness exist?
- Compure com. $\}$ cope with this?
(3) Do we really need randomness?
- can we eliminate/reduce randomness.

Today: Power of Randomness

Application 1.: Equality Protocol

$$
\begin{aligned}
\text { Alice } & \\
x \in\{0,1\}^{n} & \rightleftarrows \text { Bob. } \\
& \longleftrightarrow y \in\{0,1\}^{n} \\
& \begin{array}{l}
\longleftrightarrow=y ?
\end{array}
\end{aligned}
$$

Qu: How many bots must Alice Bob exchange to check f there usps are equal?
Easy: $(n+1)$-bit determinestc protocol. Surprismy: Tight, e any deft protord
that computes $\angle Q$ requires nil bits in the wort case.

Allow Random Coins.

$$
\begin{aligned}
& r \text { sequence of ind } \begin{array}{c}
\text { rand } \\
\text { cons }
\end{array} \\
& \text { Alice } \\
& x \in\{0,1]^{n} \\
& \text { Boo } \left.\quad r \in\{0,1]^{n}\right) \\
& y \in\{0,1\}^{n} \\
& a=\langle x, r\rangle=\sum x_{c} \cdot r_{c} \cdot \xrightarrow{(\bmod 2)}, \quad \begin{array}{l}
\sigma=\langle y, x\rangle \\
\vdots / 1
\end{array} \quad a=6 ? .
\end{aligned}
$$

Case: : $x=y, \quad P_{r}$ [Protocol is correct $7=1$
Case-: $x \neq y$ Pr [Protocol is wrong]

$$
\begin{aligned}
& =P[\langle x, r\rangle=\langle y, r\rangle] \\
& =P[\langle x-y, r\rangle=0(\bmod 2)] \\
& =P \\
& P\langle\langle z, r\rangle=0(\bmod 2)]
\end{aligned}
$$

$$
\text { where } \begin{aligned}
& z=x-y \\
& \neq 0^{n}
\end{aligned}
$$

Since $z \neq 0^{n} ; \exists i \in[\ln] \quad z_{i}=1 \neq 0^{n}$

$$
\begin{aligned}
* & =P_{r}\left[z_{1} r_{1}+z_{2} r_{2}+\ldots+z_{-} r_{i}+\ldots+z_{n} r_{n}=0\right] \\
& =P_{\pi}\left[r_{i}=z_{1} r_{1}+\ldots+z_{i+r} r_{i-1}+z_{c+1} r_{k_{r+2} \ldots}+z_{n} r_{r}\right] \\
& =1 / 2 .
\end{aligned}
$$

Comet. There is a constant bt ronolomized protocol fo $E Q$ (in the shared random string model
Application 2: Pramsey Theory
Fortis- Szeteres:
Fiery n-vertex simple graph has esther a clique of sire $\frac{1}{2} \log n$ or
an independent set of sage $\frac{1}{2} \log n$
(le, $\alpha(G) \geqslant \frac{1}{2} \log n$ or $\left.\alpha(\bar{G}) \geqslant \frac{1}{2} \log n\right)$
Qr: How tight 10 the above?
[Eidos] There is an n-venter simple? graph C st

$$
\alpha(\sigma) \leq 2 \log n=\alpha(\bar{\sigma}) \leq 2 \log n .
$$

Proof (via probabilistic method).

Open: Come op w/ an alternate "explicit" construction of such a graph.
Recently, Chattopadhyay Ecterman

$$
\exp \left((\log \log n)^{c}\right) \text { fo some }
$$

$$
c>1
$$

Application 3: Prumality Testing
Problem: Given a positive integenn (in bray)

$$
\begin{aligned}
& \text { Pr }(\alpha(\sigma) \leq 2 \operatorname{logn}, \alpha(\bar{\sigma}) \leq 2 \log n] \\
& \left.G \sim \sum_{0,1}\right\}^{(2)} \\
& >0 \text {. }
\end{aligned}
$$

check if n is preme or composite?
Miller: Extended Piemann Hypothesis det paky algorithon for primalisy. SMillcr-Rabin: Randomized polynomal tome n-prime $\quad \operatorname{Pr} \angle M R(n, r)=$ prme $]=1$ n-comp $\quad P_{r}[M R(n, r)=\operatorname{prme}]<\frac{1}{100}$

Solovay. Strassen: randomired paly time algorithom.
2002: Agrawal, Kayal = Saxema - determmistir palytrone alg for primality
Application 4: Generating Prmes Efficrenty.
Problem: Civen a positive integer n (in binary) output a prome number Getween
$n=$ in? Prek randoms nomberm $[n, 20]$.
$P r\left[m\right.$ is prime] $\approx \frac{1}{\log n}$
Open: Deterministic
"psecudo-deterministic" algorithms.
Application 5: Cindirected Connectivity. (connectivity
(uconn)
Problem: Given an undirected simple graph $G=(V, E) 22$ special vertices $\quad \& \quad t \in V$, are $\&=t$ connected?

- Efficient (crt space) randomized alg for UCONN.
- 2004: Reingold. - determinists logspace efferent in spare)
algorithm fo UCONN algorithm for UCONN

Application 6: MAXCOT
Graph $G=(V, E)$

$$
S, T \subseteq V \quad \cot (S, T)=\{\xi, V\} / u \in S, r \in T\}
$$

$$
\cot (S)=\operatorname{cat}(S, v 1 S)
$$

Problem: Given a simple graph $G=(v, E)$, find a cot 5 that maximipes $|\cot (S)|$.

NP-hard (Karp's list of NP-complete problems)
Approximation to MAXCCT
$\frac{1 / 2 \text {-apprx MAXCUT }}{\text { M }}$ (VBing xandomness).
input: $\sigma=(V, E)$
Alg: Oatpat $S \subseteq V$.

$$
\begin{aligned}
& \mathbb{E}\left[(\operatorname{cut}(S)]=\mathbb{S}\left[\sum_{e \in E} \mathbb{Z}\left[\begin{array}{cc}
e s \cot G y \\
(S v i s)]
\end{array}\right]\right.\right. \\
& \left.=\sum_{e \in E} \mathbb{E}[\mathbb{H} L e \in \cot (s r v)]\right] \\
& =\sum_{C \in E} P_{S}[e \in \operatorname{cut}(S, W S)]
\end{aligned}
$$

$$
=\sum_{e \in E} \frac{1}{2}=\frac{\mid E /}{2}
$$

为

