Today

- Vertex Expansion
* Random groats
* KPS Generator
- Spectral Expansion

CSS. 413.1
Peudorandomness
Lecture 07 (2021-9-14)
Notructor: Prahladh
Harsha.

Recall from last tone
Vertex Expansion: $G=(V, E)$ on N vertices (D-regular) is called a (FE,A)-vertex expander for some $1 \leq K \leq N, A>1$

$$
\begin{aligned}
& \text { if } \forall S \subseteq V,|S|<k \Rightarrow|N(S)|>A|S| . \\
& N(S)=\{v \in V \mid \exists u \in S,\{u, v\} \in E\} \text {. }
\end{aligned}
$$

Q1: Do such graphs exist?
Random graph (picked uniformly from the set of D-regular graph of N vertices) is "expanding
Tho: $\forall D \geqslant 3, \exists \alpha \forall N$, a random D-regular graph on N vertices is
($\alpha N, D-1.01$)-vertex expander. with
high probability.
Prove a (weaker) bipartite version. of above freorem.

$G=(L, R, E)$ is a (t, A)

- left expander

If $\forall S \subseteq \angle$

$$
|\delta|<k \Rightarrow|N(S)|>A|S|
$$

$|L|=|R|=N$
Theorem: $\forall D, \exists \alpha, \forall N$ a graph sampled from BiD (N, D)
$1 s$ an ($X N, D-2$)-left expander with probability at least 1/2.
$\operatorname{Brp}(N, D)$.

$$
|L|=|R|=N .
$$

regular).

For each $v \in L$ pick D vertices in R conifirmit,
D-leff at random (w/ repetition) s assign them as ibis of D

Pf: Let $K \leqslant \alpha N$

$$
\begin{aligned}
& \left.P_{k}=P_{r}[J S \subseteq L,|S|=k, \quad|N(S)|<C D-2) k\right] \\
& P_{k}(S)=B_{P}(N, D) \\
& G \& B_{P}(N, D)
\end{aligned}
$$

where $S \in(L)$

$$
P_{k} \leqslant \sum_{S \in\left(\frac{L}{k}\right)} P_{k}(S)
$$

Event: $\mid N(S) /<(D-2) K$

Norse of S

$$
=v_{1}, \ldots . v_{k \in D}
$$

Cpicted conctom \&f at random from R). Pr $\left[i^{\text {th }}\right.$ vertex is a repeat $] \leqslant \frac{e-1}{N}$
$P_{R}(S)$

$$
\leqslant \frac{K D}{N}
$$

$P_{r}[|N(S)|<(D-2) k]=P_{n}[$ There are at least $2 t$ repeats 7

$$
\begin{aligned}
& \leqslant\binom{ k D}{2 k}\left(\frac{k D}{N}\right)^{2 k} \\
P_{k} \leqslant \sum_{S \in\left(L_{k}\right)} P_{a}(S) & =\binom{N}{k}\binom{k D}{2 k}\left(\frac{k D}{N}\right)^{2 K}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant\left(\frac{N e}{k}\right)^{k}\left(\frac{H D D_{e}}{2 K}\right)^{2 k}\left(\frac{k D}{N}\right)^{2 k} \quad\left(\binom{n}{r} \leq\left(\frac{n e}{r}\right)^{r}\right) \\
& =\left(\frac{N e^{3} k^{2} D^{4}}{4 k N^{2}}\right)^{k} \\
& =\left(\frac{e^{3} k D^{4}}{4 N}\right)^{k} \quad K \leq \alpha N \\
& =\left(\frac{e^{3} \alpha D^{4}}{4}\right)^{k} \quad\left(\operatorname{Set} \alpha=\frac{1}{e^{3} D^{4}}\right. \\
& \leq\left(\frac{1}{4}\right)^{k}
\end{aligned}
$$

${ }_{G}$ Pr C is not a $(\alpha N, D-2)$-left expander]

$$
\begin{array}{ll}
\leqslant P_{1}+P_{2}+\cdots & +P_{\alpha N} \\
\leqslant\left(\frac{1}{4}\right)^{\prime}+\left(\frac{1}{4}\right)^{2}+\cdots \quad\left(\frac{1}{4}\right)^{\alpha N} \\
<\frac{1}{2} . &
\end{array}
$$

G is a ($\alpha N, D-2$)-(eff expander w/ prob

$$
\geqslant 1 / 2 .
$$

Tan we construct such graphs explicitly"?
Explicit Construction: Fix D, construct a family of
$(\alpha N, A)$ expanders $\left[G_{N} \int_{N=1}^{\infty}\right.$ where $\left|V\left(\sigma_{N}\right)\right|=N$.

Explicrt Construction: Given N, oatputs σ_{N} in trone poly (N)

Ocper-explict Constraction: Given N, and $v \in[N]$ s $i \in[D]$, output the i-th nerghbour of r in G_{N}

$$
p d y(\log N, \log D)
$$

(22: Are expanders aretal?
Application: Reducing Randommess Cif seper-explicit constraction of expanders exist).
$R P: \quad \angle \in \mathbb{P}$
If \mathcal{I} a rand polytame alg A sut

$$
\begin{aligned}
& x \in L \Rightarrow P_{r}[A(x, x)=a c c] \geqslant 1 / 2 \\
& x \notin L \Rightarrow P_{r}[A(x, x)=a c c]=0 .
\end{aligned}
$$

Error Reduction:
k independent repetitions
Reduce error from $1 / 2$ to 2^{-K} Wy choosing t and $x_{i}^{\prime} s$
\#random $\operatorname{coms}=$ k.m
Hrepetitions $=k$.
Reduce error from $1 / 2$ to δ
\#random coins $\left.=m \cdot \log \left(\frac{1}{f}\right)\right\} \rightarrow$ Use
Frepetions $=\log \left(\frac{1}{8}\right)$. to reduce
\#random coins.

$\{0,1\}^{m}=N$

- space of random coins Suppose we have a ($\frac{N}{2}, A$)-expander which is Dregular for some constant $D \geqslant 3$ $2 A>1$ (super explicit construction)
$A^{(t)}$: On moat $x \in[0,1]^{n}$
(Run A - Prot $\left.x \leftarrow_{c} 50,\right]^{m}$
for a super-axplicitly" construction
r-vertex in σ
random if Think n-vertex in G_{N}
polytione - Let $r_{1} \ldots r_{k}$ be the because all vertices within dosfonce of $L t \rightarrow o r$
coper exploit
$\mathrm{k},\left\{r_{1} \ldots r_{k}\right\}=B a l(r, t)$ construction

$$
=\left\{r^{\prime} \in V\left(\sigma_{s}\right) / d\left(r, x^{\prime}\right) \leq t\right\}
$$

- Pan A on $\left(x, r_{1}\right) \ldots\left(x, r_{r}\right)$ = accept if any one acc 2 reg o fhercurse.

Pr $\left[A^{(A)}\right.$ errs] ??
$C t=O(\log n)$
If $A^{(t)}$-rains in poly trine)

$$
\begin{aligned}
& \text { Fix } \quad x \in L . \\
& \begin{aligned}
B A D_{x}=\left\{r \in\{a\}^{n} /\right. & A(\cos r) \\
& =r y j\}
\end{aligned}
\end{aligned}
$$

$$
\frac{|B A D|}{2^{m}}<\frac{1}{2}
$$

errol

$$
\begin{aligned}
\operatorname{Pr}\left[A^{(t)}(x, r) \neq a x\right] & =P_{r}\left[B(g, t) \leq B A D_{x}\right] \\
B A D_{x}^{(t)}=\{r / B(r, t) & \left.\leq B A D_{x}\right\} \\
\text { error } & =\frac{\left.\mid B A D_{x}^{(t)}\right)}{2^{m}}
\end{aligned}
$$

$\sigma x x$

$$
\operatorname{Ball}\left(B A D_{x}^{(t)}, t\right)
$$

$$
\subseteq B A D_{x}
$$

$$
\begin{aligned}
&\left|B A D_{x}\right| \geqslant\left|B a l l\left(B A D_{x}^{(t)}, t\right)\right| \\
& \geqslant A^{t} \cdot \mid B A D_{x}^{(\theta)} \\
&\left|B A D_{x}^{(t)}\right| \leqslant \frac{|B A D|}{A^{t}} \\
& \text { error }=\frac{\left(B A D_{t}^{(t)}\right.}{2^{m}} \leqslant \frac{|B A D|}{2^{m} A^{t}} \leqslant \frac{1}{2 \cdot A^{t}} \\
& \leqslant 1 / A^{t}
\end{aligned}
$$

Error has dropped from $/ 2$ to $\frac{1}{A^{t}}=\mathcal{\delta}$
(Setting $\left.t=\frac{\log \left(\frac{1}{8}\right)}{\log 4}\right)$
Thin: $C=(V, E)$ - D-regular graph on? CLap 7^{N} vertices. $=\left(\frac{N}{2} A\right)$-expander
Pipporye= for some $A>$? then
Sipsex $]+B \leq V, \quad|B|<N / 2$.

$$
P_{r}[B(r, t) \subseteq B] \leqslant \frac{1}{A \epsilon}
$$

Error reduction $(/ 2 \rightarrow \delta)$.
\# random coins =

$$
\text { \#t repetitions }=D^{t}=\operatorname{pot}\left(\frac{t}{f}\right)
$$

Csince, D, A are
 constants

$$
\left.G=(V, E) \quad \delta=\frac{1}{A^{t}}\right)
$$

(k, A) expander
Next time: Spectral Expansion

