Today

- Spectral Expansion
- Expander Maxing

Lemma

- Vertex us Spectral Exp
$\cos 413.1$
Peudorandomness
Lecture of (2021-9-16)
Instructor: Prahlach Marsha.

Today. Expansion in terms spectrum of the eroomalired) adjacency matrix.
$G=(V, E)$ on N vertices.
(typically D -regular)

A - adjacency matron $A \in \mathbb{R}^{v \times v}$

$$
A(0, v)= \begin{cases}1 & \text { if }(v, r) \in E \\ 0 & \text { otherwise. }\end{cases}
$$

A is symmetric.
M- (Normalized) Adjacency Matrix [Random Walk Matrix]

Equivaleorty $M=D^{-1} A ; D=D \log (d$ deg $)$
Linear Operator: $\mathbb{R}^{2} \rightarrow R^{2}$
$f \in \mathbb{R}^{2}$ (vectors- column vectors)

$$
(M f)(u)=\sum_{2} M(0, v) f(v), \forall u \in V .
$$

"Averaging" Operator.

$$
M \cdot \mathbb{I}=\mathbb{Z}
$$

Right Multiplication

$$
p \in \mathbb{R}^{2}
$$

$$
\begin{aligned}
& \rho^{\top} \longmapsto \rho^{\top} M \\
& \rho \longmapsto M^{\top} P
\end{aligned}
$$

$$
\left(M_{p}^{\top}\right)(u)=\sum_{v} M^{\top}(u, v) p(v)
$$

$$
=\sum_{v} M(v, 0) p(v)
$$

$$
\left.\left(M^{T} p\right)(u)=\sum_{r} p(v) M(v, 0)\right\}
$$

Ranator
p-prob dist on vertices. $\begin{gathered}\text { wall f } \\ \text { spencer }\end{gathered}$ - Represents Random walt by Mature

$$
p^{\top} \rightarrow p^{\top} M \rightarrow p^{\top} M^{2} \rightarrow \ldots p^{\top} M^{r} \rightarrow \ldots
$$

As there a stationary dist?

$$
\text { le... } \pi^{\top}=\pi^{\top} M
$$

σ is D-regulas, then the uniform distr. Cation
re, $\pi(u)=\frac{1}{N}, \forall u \in V$
$1 s$ a stationary distrerbetion.

$$
\text { More generally } \quad \pi(u)=\frac{\operatorname{deg}(c)}{\sum_{\omega \in V} d \operatorname{deg}(\omega)}
$$

is a stationary dist for M

$$
\text { le., } \quad \pi^{\top} M=\pi
$$

Eigenvalues 2 Eigenvectors:

$$
M \text { is a } \mathbb{R}^{d x} \text {-matrix. }
$$

$$
\varphi \in \mathbb{R}^{v} \backslash\{0\}, \lambda \in \mathbb{R} \text { such that }
$$

$$
M_{\varphi}=\lambda \varphi
$$

φ is an eigenvector as eigenvalue
Quadratic form
Inner Product: $<,>: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$
bilinear $z \cdot(f f) \geqslant 0=0$ Af.
$f, g \in \mathbb{R}^{2}$

$$
\begin{aligned}
&\langle f, g)_{\pi}=\sum_{u \in V} \pi(u) f(v) g(a) \\
&=\mathbb{E}^{v}[f(v) g(c)] \\
& u \leftarrow_{\pi}
\end{aligned}
$$

Quadrate form associated w/ M
$\langle f, M g\rangle_{\pi}=\frac{\| F}{u \leftarrow_{\pi^{v}}}[f(v)(M g)(u)]$

$$
\begin{aligned}
& =\prod_{u \not K_{\pi} v}\left[f(c) \sum_{v \in v} M(v, v) g(v)\right] \\
& =\mathbb{E}_{c<\pi} /\left[\sum_{v \in V} M(c, v) f(0) g(v)\right] \\
& =\mathbb{F}_{e=(0, y) \in_{0}}[f(0) g(v)] \\
& =\langle g, M f\rangle_{\pi}=\langle M f g\rangle_{\pi}
\end{aligned}
$$

M is self-adpoint curt $<,\rangle_{\pi}$

$$
\left.\left.r_{c},<f, M_{l}\right)_{\pi}=\left\langle M f_{c}\right\rangle_{\pi}\right)
$$

Spectral Theorem: Let $M \in \mathbb{R}^{N \times N}$ $2\langle$,$\rangle be an inner prodant$ sit M is self-adyoint curt \langle, then there exist

$$
\begin{aligned}
& v_{1} \ldots \\
& \begin{array}{l}
\lambda_{1} \in \mathbb{R} \\
\lambda_{1} \ldots \quad \lambda_{n} \in \mathbb{R}
\end{array} \\
& \text { set }(i) \forall i_{i}, \quad M v_{i}=\lambda v_{i} \\
& \text { (ii) }\left\langle v_{i}, ~ v\right\rangle=\mathbb{J}[c=j]
\end{aligned}
$$

Hence, M (re, random walt matrix) has a fall eigen decomposition.

Remark: (1) MII = II lie, II is an evertor wa/ be 1)
(2) M. -averaging operators.
$M_{v}=\lambda r$ for some $\lambda \in \mathbb{R}$
then $|\pi| \leqslant 1$
M. random walk

$$
\begin{aligned}
& 1=\lambda_{1} \geqslant \lambda_{2} \ldots \geq \lambda_{n} \geq-1 \\
& \text { II, values } \\
& v_{n} \ldots \\
& \\
& \text {-vectors }
\end{aligned}
$$

ν_{i} are pairwise arthoyand

$$
\left\langle v_{c}, \mathbb{1}\right\rangle_{\pi}=0
$$

Gigen Spectrum:

Spectral Expansion.
A graph $G=(V, E)$ on N-vertices is sard to be a r-spectral expanolen if spectral gap of the associated random walt matrix is at least

$$
\|f\|_{2, \pi}^{2}=\langle f, f\rangle_{\pi}
$$

Equivalently, spectral gap

$$
r(M)=l-\max _{f \frac{1}{x} \mathbb{H}}^{\|f\|}
$$

Spectral Expansion vs Vertex Expansion

Expander Mixing Lemma: (EML)
M-random walt matrix with spectral gap $-\lambda$. and

$$
\begin{aligned}
& S, T \subseteq V, \quad \pi(S)=\alpha ; \quad \pi(T)=\beta . \\
& \begin{aligned}
\begin{array}{l}
P \\
e=(c, v) \sim E
\end{array} & \left.\sum U \in S, v \in T\right]-\alpha \beta \mid \\
& \leqslant \lambda \sqrt{\alpha(1-\alpha) \beta(1-\beta)}
\end{aligned} \\
& \leqslant \lambda \sqrt{\alpha \beta}
\end{aligned}
$$

Pf: II indicator vector for set S

$$
\left\|_{S}(u)=\right\| \|[u \in S]
$$

$\frac{\|}{s}=a_{-} \| \frac{\pi}{s}+$ where $\left\|_{s}^{t} I\right\|$

$$
\left\langle\frac{\mathbb{H}}{3}, \mathbb{I}\right\rangle_{\pi}=a\langle\mathbb{1}, \mathbb{I}\rangle \Rightarrow \alpha=a \cdot 1
$$

Hence, $\mathbb{H}_{s}=\alpha \mathbb{I}+\mathbb{I}_{s}^{\perp}$
Similarly $\mathbb{I}_{T}=\beta \mathbb{I}+\mathbb{I}^{\perp}$

$$
\begin{aligned}
& \underset{\cos (G r) \sim E}{P r}[u \in S, r \in T]=\left\langle\mathbb{H}_{S}, M \|_{T}\right. \\
& =\left\langle\alpha \mathbb{I}+\mathbb{H}_{S}^{\perp}, M\left(\beta \mathbb{I}+\mathbb{H}_{T}^{+}\right)\right\rangle_{\pi} \\
& \left.=\alpha \beta\langle\mathbb{I}, \mathbb{I}\rangle_{\pi}+\alpha\left\langle\mathbb{I}, M_{T}\right\rangle_{T}^{\prime}\right\rangle_{T} \\
& +\beta\left\langle\mathbb{H}_{S}^{\perp}, M \mathbb{I I}_{\pi}+\left\langle\mathbb{Z}_{S}^{\perp}, M \mathbb{H}_{\pi}^{\perp}\right\rangle_{\pi}\right. \\
& =\alpha \beta+\alpha\left\langle M \mathbb{\mathbb { Z }}, \mathbb{\#}_{T}{ }^{+}\right\rangle+ \\
& \beta\left\langle\left\|_{S}^{1},\right\| \frac{11}{\pi}+\left\langle\left\|_{\pi}^{\perp}, M\right\|_{7}^{\perp}\right\rangle_{\pi}\right. \\
& =\alpha \beta+\left\langle\frac{\mathbb{M}_{s}^{\perp}}{\perp}, M_{T}^{\perp}\right\rangle_{\pi} \\
& \left|\underset{(c, v) \sim E}{P_{r}}\langle U \in S, v \in T]-\alpha \beta\right|=\left|\left\langle\mathbb{H}_{S}^{\perp}, M \mathbb{H}_{T}^{\perp}\right\rangle_{\pi}\right| \\
& \leqslant\left\|\frac{\|_{s}^{1}}{2}\right\|_{2, \pi}\|M\|_{T}^{1} \|_{2, \pi} \\
& \leqslant\| \|_{S}^{+}\left\|_{2} \cdot-\lambda\right\|\left\|_{T}^{+}\right\|_{2, \pi}
\end{aligned}
$$

What is $\quad I_{S}^{1} \|_{2}$

$$
\mathbb{U}_{s}=\alpha \mathbb{I}+\mathbb{U}_{s}
$$

$$
\begin{aligned}
& \langle\mathbb{H}, \mathbb{Z}\rangle_{\pi}=\alpha^{2}\left\langle\mathbb{H}, \mathbb{Z}_{\pi}+\| \frac{\mathbb{S}_{5}}{1} \mathbb{Z}_{2}^{2}\right. \\
& \alpha=\alpha^{2}+11_{s} 1_{2}^{2} \\
& \|/\|_{s} \Lambda_{2}=\sqrt{\alpha(1-\alpha)} \\
& |\operatorname{D}, f f| \leqslant \lambda\| \|_{S}^{f}\left\|_{2 \pi} \cdot\right\| H_{T}^{+} \|_{2 x} \\
& =\lambda \sqrt{\alpha(L \alpha) \beta(1-\theta)}
\end{aligned}
$$

[Partial Converse. [Bile Lineal] EML conclusion \Rightarrow spectral as)

$$
\left|P_{r}-\alpha \beta\right| \leq \theta \sqrt{\alpha \beta} \Rightarrow \lambda \leq C \theta\left(\left\lvert\,+\log \frac{1}{\theta}\right.\right)
$$

Spectral Expansion \Rightarrow Vertex Expansion

$$
\begin{array}{ll}
S, & \pi(S)=\alpha \\
N(S) \cdot & \pi(N(S))=\beta \\
T=V \backslash N(S)
\end{array}
$$

Apply EML to sets $S=T$.

$$
\int_{(O, v \mid E} P_{r}[u \in S, r \in T]-\alpha(-\beta) \mid \leq \lambda \sqrt{\alpha(r \alpha \alpha) \beta(T-\beta)}
$$

$$
\begin{aligned}
& \Rightarrow \alpha(1-\beta) \leq \lambda \sqrt{\alpha(1-\alpha) \beta(1-\beta)} \\
& \Rightarrow \alpha(1-\beta) \leq \lambda^{2} \beta(1-\alpha) \\
& \Rightarrow \beta \geq \frac{\alpha}{\lambda^{2}(1-\alpha)+\alpha}
\end{aligned}
$$

$$
=-\infty\left(\frac{1}{\alpha\left(1-\lambda^{2}\right)+\lambda^{2}}\right)
$$

Sets of debige an expand by $\frac{1}{\alpha\left(1-\lambda^{2}\right)+\lambda^{2}}$-factor $-\alpha / \alpha\left(1-\lambda^{2}\right)+\lambda^{2}$
Thin: $G=(V, E)$ is a N-vertex graph w/ spectral gap $r=1-\lambda$, then for all for all sets S of sine at most

$$
\rho N, \quad N(S) \geqslant \frac{|S|}{\lambda^{2}(1-\rho)+\rho}
$$

re, C s $\left(\rho N, \frac{1}{\lambda^{2}(1-\rho)+\rho}\right)$-vertex expander
Alternate newpoint of EML.
$\mathrm{F}_{\mathrm{V}} \mathrm{g}: V \rightarrow \mathbb{R}$

$$
\left.\left.\right|_{(0, v)-E} \frac{\mathbb{F}}{}(f(c) g(v)]-\mu_{f} \mu g \right\rvert\, \leqslant \lambda \sigma_{f} \sigma_{g}
$$

Cwhere means, sid is compated corrt π)

$$
\begin{aligned}
& \mu_{f}=\mathbb{E}[f(c)] \\
& \sigma_{f}^{2}=\underset{v \sim \pi}{\mathbb{E}}\left[f^{2}(c)\right]-\left(\mathbb{E}[f(v))^{2}\right.
\end{aligned}
$$

