Today

- Random Walk
- Hitting Set
$\cos .413 .1$
Peudorandomness
Lecture of (2021-9-21)
Inotecuctor: Prahladh Marsha.

Recap from last tome.
(1) A- adjacency maters

$$
\begin{aligned}
& M=D^{-1} A \quad D=D \text { rag (deg) } \\
& M(u, v)=\operatorname{Pr}[u \mapsto v] / \begin{array}{l}
\text { Random } \\
\text { Walk matrix }
\end{array}
\end{aligned}
$$

Right Multiplication: $p$-prob dist on $V$

$$
\rho^{T} \rightarrow p^{T M} \rightarrow p^{T M} M^{2} \rightarrow \cdots
$$

$\pi$-stationary dist. $\quad \pi^{\top} M=\pi$

$$
\pi(u)=\sum_{\omega \in v} \frac{\operatorname{deg}(u)}{\operatorname{deg}(\omega)}
$$

Left Multiplication: $f \longleftrightarrow$ Mf Averaging Operator
(2) Inner Product on $\mathbb{R}^{2}$

$$
\begin{aligned}
\langle f, g\rangle_{\pi} & =\mathbb{E}[f(u) g(v)] \\
& =\sum_{u \in V} \pi(u) f(v) g(c)=f^{\top} \Pi g
\end{aligned}
$$

$$
\text { where } \pi=\lambda_{\operatorname{lag}}(\pi)
$$

M. self adjoint wort $<,\rangle_{x}$

$$
\langle f, M g\rangle_{\pi}=[M f g)_{\pi}, \forall f g \in \mathbb{R}^{2}
$$

Con matrix notation,

$$
f^{\top} \pi M g=f^{\top} M^{\top} \pi g \quad \forall f g \in \mathbb{R}^{2}
$$

re, $\pi M=M^{\top} \pi$
Cigen-basis.

$$
\begin{array}{cc}
\pi=\nu_{1}, \nu_{2} \ldots & \nu_{n}-\text { evectors } \\
\in \mathbb{R}^{2} \\
1, \lambda_{2}, \ldots & , \lambda_{n} \geqslant-1
\end{array}
$$


(3) Expander Mixing Lemma:

M- ria matrix w/ spectral gap $1-\lambda$. $=$ stationary dist $\pi$

$$
\begin{aligned}
& S, T \subseteq V \quad, \pi(S)=\alpha ; \quad \pi(T)=\beta \\
& \left.\int_{e-C, v, v-E} P_{r}[C \in S, v \in T]-\alpha \beta\right] \leqslant \lambda \sqrt{\alpha(1-\alpha) \beta(t-\beta)}
\end{aligned}
$$

Applying to $S, T=V \backslash N(S)$. we get
(4) Lemma: [Spectral Expansion $\Rightarrow$ Vertex Expansion] $G=(v, E)$ of spectral gap $1-\lambda$, $G$ is $\left(\rho N, \frac{1}{\lambda^{2}+(1-\rho) \lambda^{2}}\right)$ - vertex expander. $+\rho \in(0,1)$

Cor. $G$ is a $D$-regular on $N$-vertices w/ spectral gap $r<1$
$C$ is $\left(\frac{N}{2}, 1+\delta\right)$-vertex expander for some 870 .

Surprisingly, the converse is also tran. Lemma (Vertex Expansion $\Rightarrow$ Spectral For every $\delta>0=D>0$ there Expansion) $\lambda>0$ eff $\delta>0=D>0$, there exists
vertex expander then
Gis $(1-\lambda)$-spectral expancler,

$$
\left.\lambda=\Omega\left(\frac{8}{D}\right)^{2}\right) .
$$

mationte
Thim. Let be a famity of D-regulas graphs, then the following two are equivalent.
(1) $\exists \delta>0, \quad G \in G$ is $\left(\frac{N}{2}, 1+\delta\right)$-vertex expandes
(2) Jo<x<1" GEG is a (1-x)-spectral expander
Spectral $\rightarrow$ Kertey
Gis (1- $\lambda$ )-spectral expander
Gis $\left(\rho N, \frac{1}{\lambda^{2}+\rho\left(1-\lambda^{2}\right)}\right)$ - ver-fex expander.
If $F_{1 s}$ D-regulas, $\frac{1}{\lambda^{2}+\rho\left(1-\lambda^{2}\right)}<\lambda$
$\rho \rightarrow 0 ; \quad \lambda^{2}>\frac{1}{D}$
lre,


Slight (improvement C 16 -or $\lambda$ )
The [Alton - Boppana].
Let $y$ be an infinite family of
D-regular $\omega /$ spectral expansion $\angle \lambda$, then $\lambda\left(C_{N}\right) \geqslant \frac{2 \sqrt{D-1}}{D}-O_{N}(1)$
where $O_{N}(1) \rightarrow 0$ as $N \rightarrow \infty$.

Thin [Friedman]
For any constant $D \geqslant 3$ a random D-regular graph on $N$ vertices. then $G$ is a ( $1-\lambda$ )-spectral expander where $\quad \lambda \leqslant \frac{2 \sqrt{D-1}}{D}+0_{N}(1)$ with high probability) (where $O_{N}(1) \rightarrow 0$ as $N \rightarrow \infty$ )

Lubotoky - Philips-Sarnak -gave an explicit construction $\&$ $D$-regular expanders. satisfying


## Random Walker

M- random walk matrix $P_{0}$ - initial distribution on vertices

$$
\begin{aligned}
P_{1} & =M^{\top} P_{0} \\
P_{t+1} & =M^{\top} P_{t}
\end{aligned}
$$



YES. If the matrix $M$ has spectral yap - $\lambda$.

Total variation distance between $P_{t}=\pi$. $d_{r}\left(P_{E}, \pi\right)=\frac{1}{2} \sum_{v \in V}\left|P_{E}(V)-\pi(v)\right|$

$$
\begin{aligned}
& =\frac{1}{2} \sum_{r \in V} \pi(r) / \frac{P(V)}{\pi(V)}-1 / \\
& =\frac{1}{2} \sum_{V \in V} \pi(2) /\left[T^{-1} \mid(r)-1 /\right.
\end{aligned}
$$

$$
\text { Stacy. }\left\|\pi_{t}^{-1} p_{t}-\right\| \|_{2, \pi} \text { vs }\left\|\pi_{\epsilon+1}^{-1}-\right\| \|_{2, \pi}
$$

where $P_{\epsilon+1}=M_{t}^{\top}$
Lets write.

$$
\begin{aligned}
\pi^{-1} P_{t} & =\alpha \mathbb{I}+2 \quad \text { where } \\
\left\langle\|, \pi^{-1} P_{t}\right\rangle_{\pi} & =\alpha\langle\| \|, \| \\
\sum \pi(v)\left|\frac{1}{\pi r}\right\rangle_{\pi}(r) & =\alpha
\end{aligned}
$$

$\alpha=1$ if $P_{t}$ \& a prob districabos

$$
\pi^{-1} P_{t} I I+v \text { where } v I_{\pi} I
$$

$$
\begin{aligned}
& =\frac{1}{2} / / \pi_{t}^{-1}-\| \|_{1, \pi} \\
& L=\left(\|f\| k \pi /(r) / f()^{1 / k}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { as } k \\
& \text { increases) }
\end{aligned}
$$

$$
\pi_{t}^{-1}-\mathbb{I}=v \cdot \text { and } r \frac{1}{\pi} \|
$$

Lets conderstand what happens we take a random step.

$$
\begin{aligned}
\pi_{t+1}^{-1}-\mathbb{I} & =\pi^{-1} M_{t}^{\top}-\mathbb{I} \\
& =M \pi_{t}^{-1} P_{t}-\mathbb{I} \quad \text { S Since } \\
& =M\left(\pi^{-1} P_{t}-\mathbb{I}\right) . \\
& =M v
\end{aligned}
$$

$$
\begin{array}{ccc}
\left\|\pi_{E}^{-1}-\right\| \|_{2 \pi} & \text { rs } & \left\|\pi_{P_{\text {tr }}^{-1}}-\right\| \|_{2, \pi} \\
\|v\|_{2 \pi} & \text { rs } & \| M r l_{2 \pi}
\end{array}
$$

for some $v \frac{1}{2} \mathbb{1}$.
Because $M$ has spectral gap $1-\lambda$ for all $V t_{n} H$

$$
\|M N\|_{2, \pi} \leq \lambda / / v / \|_{2 \pi} .
$$

Puttrong them together.

$$
\begin{aligned}
d_{\pi}\left(P_{\epsilon}, \pi\right) & \leqslant \frac{1}{2} l \pi_{\epsilon}^{-1} P_{\epsilon}\| \| / \|_{2} \\
& \leqslant \frac{\lambda^{t}}{2}\left\|\pi_{0}^{-1}-\right\| / 2, \pi . \cdots(*)
\end{aligned}
$$

If $\lambda<1$, then $d_{r}\left(p_{1}, \pi\right) \rightarrow 0$ as

$$
t \rightarrow \infty .
$$

Lets try to understand (*) when $G$ is $D$-regular.
$\pi$-uniform dot

$$
\left\|\pi^{-1} P_{0}-\mathbb{\|}\right\|_{2, \pi}^{2}=\sum \frac{1}{N}\left(P_{0}(v) N-1\right)^{2}
$$

Assume $P_{0}$-start dist as $\operatorname{con} c$ on a vertex

$$
\begin{aligned}
\text { re } P_{0} & =(0,0,1,0, \ldots 0) \\
\left\|\pi^{-1} P_{\sigma}-\right\| / /_{2 \pi}^{2} & =\sum \frac{1}{N}(N-1)^{2}=0(N)
\end{aligned}
$$

Lemma: Any D-regular graph on
$N$ vertices that is connected: $N$ vertices that is connected 2 . non- bipartite satisfies $r \geqslant \frac{1}{C O N^{2}}$ (re, $\left.\lambda \leqslant-\frac{1}{C D N^{2}}\right)$


$$
\begin{array}{ll}
\lambda \leqslant\left(1-\frac{1}{N^{2} D}\right) & t=O\left(\operatorname{CDN}^{2} \log N\right) . \\
d_{\pi}\left(P_{E}, \pi\right) \leqslant \frac{\lambda t}{2} \cdot N=O\left(\frac{1}{N^{100}}\right)
\end{array}
$$

Hence, in $O\left(\operatorname{CDN}^{2} \log N\right)$ steps the random walt on any D-reaptor graph converges to the uniform dist. Gif the graph is connected

- non-6partle) in polynomid \& steps.

Forthat about random walk on expanders?
Any $D$-regular graph $\Rightarrow r \geqslant \frac{1}{C D N^{2}}$ ( $C=\lambda \leq-\frac{1}{\partial N^{2}}$ )
Expander

$$
\Rightarrow \quad \begin{aligned}
& r \geqslant c>0 \\
& \underbrace{\lambda \leqslant 1-c<1}_{\text {constant }}
\end{aligned}
$$

As $\lambda$ is a constant bold away from? $O(l \log N)$ steps
suffice to converge to the uniform rotor
\# random coins in order to take an $f=O(l o g N)$ - step walk starting from a fixed point.

$$
\begin{aligned}
& -t \cdot \log D \\
& -\log N \cdot \log D \\
& -O(\log N) \text { if } \underbrace{}_{\text {cons }}
\end{aligned}
$$

constant.

Today.
Random walls in expander converge to the uniform dist in O(log $N$ ) steps even of are start from a fixed vertex.

Next throne:
t- Random walt starting at a unifongy random
has the property.
t steps boot "simaltaneoustron san n


