Pseudorandomness: Lecture II
Recap: \triangleright Spectral expanders (N, D, λ)-expanders.
$G-\operatorname{deg} D, \lambda$-spectral expanders

$$
-\lambda(G)=\max _{x \perp \pi} \frac{\|x M\|}{\|x\|}
$$

- Spectral gap: 1- $\lambda(G)$.
- Spectral expanders \Rightarrow vertex expanders.

$$
\begin{aligned}
& \therefore \text { Random wake: } \\
& p \text { - prob dist. } \\
& p=p^{\prime \prime}+p^{\perp} \nabla^{\perp \pi} \\
& =\pi+p^{\perp} \\
& {\left[-\pi-\quad\left(\pi+p^{\perp}\right) M=\pi M+\quad p^{\perp} M\right.} \\
& =\pi+(\text { error term }) \longrightarrow \lambda \text { factor } \text { smaller than } p \\
& M=(1-\lambda) J+\lambda \cdot E \text {, where }\|E\| \leq 1 \text {. } \\
& \Delta\left\{G_{N_{i}}=\left(N_{i} D, \lambda\right) \exp .\right\}_{i=1 . \ldots \infty}
\end{aligned}
$$

Middy explicit: Generate adj matrix un poly (N) time.
Super explicit: Get $i^{\text {th }}$ neighbour of vertex u in poly $(\log N, \log D)$

- Applications to error reduction with "few" random bits.

Are there explicit expander families?

- Margulis' construction:

$$
V=\mathbb{Z}_{N} \times \mathbb{Z}_{N} . \quad \text { Spectral gap }>\text { canst }>0
$$

Neighbours of (a, b) :

$$
\{(a \pm 1, b),(a, b \pm 1),(a, b \pm a),(-b, a),(b,-a),(a, b)\} .
$$

\square p-cycle with inverses. (Selberg graphs)
$V=\mathbb{Z}_{p}$.
Neighbours of $x=\left\{x+1, x-1, x^{-1}\right\}$.
Then: There is an $\varepsilon>0$ s.t this is a $(p, 3,1-\varepsilon)$-expander for any prime p.

What is the best we can hope for?
What do random graphs give? $\quad \lambda(G) \leqslant \frac{2 \sqrt{D-1}}{D}+o_{n}(1)$
For any D-reg family, $\lambda(G) \geqslant \frac{2 \sqrt{D-1}}{D}-o_{n}(1)$
LPS: $\lambda(G) \leqslant \frac{2 \sqrt{D-1}}{D} \quad \begin{gathered}\text { "Ramanujan } \\ \text { Graphs" }\end{gathered}$

Car we build good expanders by making a "bad" expander better?

Operations on graphs:
Say G is an (N, D)-graph.
$\Gamma(x, i)=$ the $i^{\text {th }}$ neighbour of u.

$$
=v
$$

$$
\operatorname{Rot}_{G}(u, i)=(v, i)
$$

$$
\Gamma(v, j)=u
$$

D Suppose G is an (N, D, λ)-expander.

$$
G^{2}: \quad V=[N]
$$

For every length 2 path $u \sim v \sim w$ in G,
u add a edge between $u \& w$ in G^{2}.
Degree? D^{2}.

$$
\Gamma_{G^{2}}(u,(i, j))=\Gamma_{G}\left(\Gamma_{G}(u, i), j\right)
$$

What is the random walk matrix? M_{G}^{2},
And what is $\lambda\left(G^{2}\right)$?

$$
\lambda\left(G^{2}\right)=\max _{x \perp \pi} \frac{\|x M M\|}{\|x\|}=\lambda \cdot \max _{x \perp \pi} \frac{\|x M\|}{\|x\|}=\lambda^{2} .
$$

"Graph powering"

Pro: Brings down λ.
Con: Doesn't increase N Increases D.

$$
\begin{aligned}
& D \quad G_{1}=\left(N_{1}, D_{1}, \lambda_{1}\right) \text { expander } \\
& G_{2}=\left(N_{2}, D_{2}, \lambda_{2}\right) \text { expander. } \\
& G_{1} \otimes G_{2}=\text { Graph on }\left[N_{1}\right] \times\left[N_{2}\right] \\
& \\
& \quad\left(u_{1}, v_{1}\right) \text { conn to }\left(u_{2}, v_{2}\right) \text { if } \\
& \quad\left(u_{1} u_{2}\right) \in G_{1} \& \& \quad\left(v_{1} v_{2}\right) \in G_{2} .
\end{aligned}
$$

What is the degree? $D_{1} D_{2}\left\{(i, j): i \in\left[\begin{array}{c}\left.\left.i \in D_{1}\right]\right\} \\ \left.j \in D_{2}\right]\end{array}\right\}\right.$
What about eigenvalues? What is the adjacency matrix?

$A_{G} \otimes A_{H}$
replace every entry $\left(A_{a}\right)_{i j}$ by $\left(A_{a}\right)_{i j} \cdot A_{H}$
"Tensoring" $=$ "Take steps in parallel".

\otimes

Question:

$$
(u \otimes v) A_{1} \otimes A_{2}=u A_{1} \otimes v A_{2} \rightarrow \text { Check }
$$

If x is an eigenvector of A_{1} with e.val α

$v{ }^{\prime}$	$"$	$"$	$"$	A_{2}	$"$	$"$	β
$W \otimes r$	$"$	$"$	$"$	$A_{1} \otimes A_{2}$	$"$	$"$	$\alpha \beta$

$G_{1} \otimes G_{2}:$

\#vertices	$N_{1} N_{2}$	\vdots
λ	$\max \left(\lambda\left(G_{1}\right), \lambda\left(G_{2}\right)\right)$	$\stackrel{0}{0}$
Deg	$D_{1} D_{2}$	\ddots

How do we reduce degree without losing too much in λ ?

Candidate : Replacement product.

(R)

$$
\underbrace{}_{\left(N_{2}, D, \lambda\right)}
$$

$G_{1}\left(B G_{2}\right.$ - $N N_{2}$ vertices.

$$
\begin{array}{ll}
\text { Degree } & D_{2}+1 . \\
\lambda & ? ?
\end{array}
$$

B-)
Slightly painful to analyse.
Too tied to the cloud...
Can we come up with a graph product $G_{1}(t) G_{2}$. that has a better balance between inter-cloud a intra-cloud mixing?

$$
\left(N, D, \lambda_{1}\right) \quad\left(D, d, \lambda_{2}\right)
$$

Zig-zag product:

$G_{1}(E) G_{2}$.

- Graph on ND vertices
- $\operatorname{Deg} d^{2}$.

$$
\begin{gathered}
\Gamma_{G \oplus H}((u, a),(i, j)): \\
\Gamma_{H}(a, i)=a^{\prime} \\
\operatorname{Rot}_{G}\left(u, a^{\prime}\right)=(v, b) \\
\Gamma_{H}(b, j)=b^{\prime} \\
\therefore \Gamma_{G \otimes H}((u, a),(i, j))=\left(v, b^{\prime}\right)
\end{gathered}
$$

Un: If H is the complete graph on D vertices with self-loops, what is G (2) H ?

Alternate view point:

cloud (u)

Put a complete bipartite graph between

$$
\Gamma_{H}\left(h_{1}\right) \quad \& \quad \Gamma_{H}\left(h_{2}\right) \text {. }
$$

Analysing the eigenvalue bound for zig.zag: $G(2) H$.

Step 1: Walk within the cloud.

$$
I \otimes M_{H}
$$

Step 2: Take the intercloud edge. Rota.

Step 3: $I \otimes M_{H}$

$$
\begin{aligned}
M & =(I \otimes H) \cdot R d_{G} \cdot(I \otimes H) \quad H=\left(1-\lambda_{2}\right) \cdot J+\lambda_{2} \cdot E \\
& =I \otimes J \cdot R o t_{G} \cdot I \otimes J \cdot\left(1-\lambda_{2}\right)^{2} .
\end{aligned}
$$

zigzag of G with the complete graph (with) self loops

$$
\begin{aligned}
& +\left(1-\lambda_{2}\right) \cdot \lambda_{2} \cdot(I \otimes J \cdot \text { Rota. } I \otimes E) \text { spectral } \\
& +\left(1-\lambda_{2}\right) \cdot \lambda_{2}\left(I \otimes E \cdot \operatorname{Rot}_{G} \cdot I \otimes J\right), \text { note } \\
& +\lambda_{2}^{2} \quad(I \otimes E) \cdot \operatorname{Rot} \cdot(I \otimes E) \\
& =G \otimes k_{D}^{*} \cdot\left(1-\lambda_{2}\right)^{2}+\left(1-\lambda_{2}\right) \lambda_{2} \cdot E_{1}+\left(1-\lambda_{2}\right) \lambda_{2} \cdot E_{2}+\lambda_{2}^{2} \cdot E_{3} \\
& \underset{\therefore 21}{\therefore 2 \lambda \|=1} \Rightarrow\|x M\| \leqslant \lambda_{1} \cdot\left(1-\lambda_{2}\right)^{2}+2 \lambda_{2}\left(1-\lambda_{2}\right)+\lambda_{2}^{2}=1-\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)^{2} \text {. }
\end{aligned}
$$

Than: [Reingdd-Vadhan-Wigatrson] $G=\left(N, D, \lambda_{1}\right)$-exp and $H:\left(D, d, \lambda_{2}\right)-\operatorname{erp}$, then $G(Z) H$ is an $\left(N D, d^{2}, \lambda\right)$ expander where $1-\lambda=\gamma_{1} \gamma_{2}^{2}$

Constructing an expander family:

$$
\begin{aligned}
H-\left(D^{4}, D, 1 / 8\right) \text {-expander. } & G_{1}=H^{2} \\
& G_{t}=G_{t-1}^{2}(2) H .
\end{aligned}
$$

Claim: G_{t} is a $\left(D^{4 t}, D^{2}, 1 / 2\right)$-expander for all $t \geqslant 1$. How long does it take to compute $\Gamma_{G_{t}}(u, i)$?

$$
\begin{aligned}
\operatorname{Time}(t) & =2 \operatorname{Time}(t-1)+O(1) \\
& =2^{O(t)} \cdots \text { damn it! too slow. }
\end{aligned}
$$

Attempt 2: $H=\left(D^{8}, D, 1 / 8\right)$ base graph.

$$
G_{1}=H^{2}
$$

$$
G_{2}=\left[G_{\frac{t}{2}} \otimes G_{\frac{t}{2}}\right]^{2} \text { (E) } H
$$

Claim: G_{t} is a $\left(D^{8 t}, D^{2}, 1 / 2\right)$-expander.
How much tine for $T_{G_{t}}(u, i)$?

$$
\begin{array}{rlr}
\text { Time }(t) & =4 \text { Time }(t / 2)+O(1) \\
& =\text { poly }(t) . \quad \text { Woohoo! }
\end{array}
$$

This is a strongly explicit family
$\ldots t$ needs to be a power of $2 \ldots$ too sparse a family.
Fri: $\quad G_{1}=H^{2}$

$$
G_{t}=\left(G_{\left\lceil\frac{t}{2}\right\rceil} \otimes G_{\left\lfloor\frac{t}{2}\right\rfloor}\right)^{2}(\varepsilon H
$$

Same guarantee.
Further, for every M, there is a graph in the above family with \# vertices M^{\prime} with

$$
M \leq M^{\prime} \leq M \cdot|H| .
$$

\cdots and now we are done.

