Nore intuition for zegreg products.
G: (N3D, 2) expander.
P1, P2, ..., VE EG.
A1, A2, A3, .., Act
$$\rightarrow$$
 E-1 indep. samples from [D].
Idea: Take H to be a (D, d, X) - expander.
b1 b2 b3 ... b2-1
 $\Gamma_{H}(b,s,i)$ $\Gamma_{H}(b_{2},i_{2})$
Que: Can use build a graph G×H that "numics" this
ward N3's i2-th neighbour to be 14.
Fixe let vertices keep thack g the b's.
G×H = on [N]×[D] (U, a)
Say the ith neighbour g (U, a)
 $= Rot_{G}(U, a')$ where a istue ith
Node is uperke.
 $I \otimes H$. Rota.
Fixe Add anothes intra-cloud step.

IOH. Rota IOH - Zigzag pod.

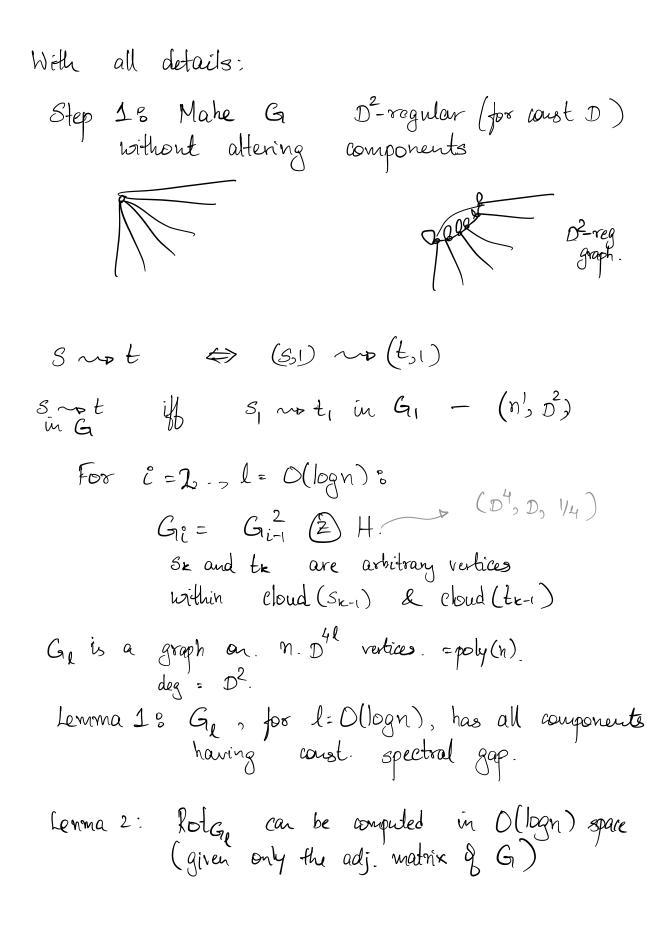
Pseudorandomness : Lecture 12.
Agendas - Finishing up some expander jamily constructions
- "low space" algorithms for undirected S-t connectivity.
Recaps - Graph operations: Good Bad.
- Powering - reduces
$$\lambda$$
.
- Tensoning - increases #rotices inc. degree
- Zigzag - reduces degree Slightly worsens λ .
Base graph: (D⁴, D, 1/8) - expander H
G₁ = H².
Claim: G₄ is a (D⁴⁺, D², 1/2) - expander.
Pf: G₂² = (D^{4(L-1)}, D⁴, 1/4) (E) (D⁴, D, 1/8)
= (D⁴⁺, D², λ)
(1- λ) $\geqslant \frac{3}{4} \cdot \frac{7}{8} \cdot \frac{7}{8} \approx 0.52$

Time (t) ≤ 2 . Time(t-1) + O(r) = exp(t)time to compute = $poly(|G_t|)$ Rol_{G_t}

Fully explicit construction:
Base graph
$$H = (D^8, D, \frac{1}{8})$$
-expander.
 $G_1 = H^2$
 $G_t = (G_{\lceil t_{l_2}\rceil} \otimes G_{\lfloor t_{l_2}\rceil})^2 \cong H$.

Claim: G_t is a
$$(D^{st}, D^{2}, \frac{1}{2})$$
 expander for all $t \ge 1$
Also, $lol_{g_{t}}$ computable in poly(t) time.
G- undirected graph. St vertices.
Is there a path from $s \rightarrow t$? DFS, BFS?
Hurdles in G.
What ij you only have $D(logn)$ space.
Huddle $\leq D^{(logn)}$
Randomised Algo:
Stort from s and take a random walk
for $l = n^{c}$ steps. (as be made $O(logn)$
If we encounter to, return "Yes". B for logn in
If we encounter to, return "Yes". (wit dag)
Else, return "No".
Why would this algo work? It actually does!
Ex: (In PS2) For any connected non-bipartite d-regular
 $n-revelex$ graph, $\lambda(G) \le 1 - \frac{1}{2d^{2}n^{2}}$
 $x to = -cotte = -cotte = -cotte = 1 (k-\pi) M^{1} \le \lambda$. $hx - \pi h \le \frac{1}{n}$
 $\Rightarrow y puls \ge \frac{1}{n} - \frac{1}{n^{2}}$ mass on t.
What chould l be so that $\lambda^{l} \le y_{n2}$
 $(1 - 2d^{2}n^{2}) \le \frac{1}{n^{2}} = l = \Theta(d^{2}n^{2}logn)$

Que what is G had spectral gap
$$1>0$$
?
What should l be?
Want $\chi^{\ell} \in Y_{n^2} \implies l = O(logn)$ is a constant.



Pf of lawma 1:s
spectral gap increases by a constant factor each
time... unless it is already high.
Claims
$$f(G_{E}) \ge \min\left\{\frac{35}{32}, f(G_{E-1}), \frac{1}{18}\right\}$$
.
Pf: $f(G_{E}) \ge (1 - (1 - f(G_{E-1})^{2}), \frac{3}{4}, \frac{3}{4})$
 $= \frac{9}{16}(2f_{E-1} - f_{E-1}^{2})$
 $= \frac{9}{16}(2-f_{E-1}), f_{E-1}$
 $\le f_{18} \implies \frac{9}{16}(2-f_{E-1}), f_{E-1} \le \frac{16}{32}$
 $f_{E}(2-f_{E-1}) \ge \frac{35}{32}$

$$\begin{aligned} \gamma_{0} &= \frac{1}{poly(n)} & \longrightarrow \quad \gamma_{1} &= \min\left(\left(\frac{35}{32}\right), \frac{1}{poly(n)}, \frac{1}{18}\right) \\ &= \lim_{n \to \infty} l = O(\log n) \text{ steps, } \quad \gamma_{1} \geq \frac{1}{18} \end{aligned}$$

Computing Rot_G, in Ollogn) space. Claime J we can compute Rot_G, in space s

