
 
Pseudorandomness Lecture 13

Agenda spectral sparsifiers

Spielman Srivastava

Given a graph G on n vertices m edges

We may want to get a sense of some connectivity

structure max flows min out
clusters

electricalflows
counting triangles

Issue edges could be 062

sparsification G
n vertices n vertices
m edges on edges weighted

preserves most info

Cut sparsifiers Benczur Karger
It e out sparsifies G if for any SE In

Eg s 5 The EA S 5
sumofthe weights
ofedges

Benezur Karger Any G has an e cut sparsifier of size
Olnlogn ez Can also be found very quickly



A stronger notion of approximation spring resistance
network

KEIR Eg 2 I ni og a Venniss

CFG edges

energy of the network G with potentials a

Defn It is a K spectral approx of G if trek

EH a E EGG E E EyGe

Obs Any spectral approximator is a cut approximator
Pf For a set s if n Is

then Each cut 5,5 A

But is a stronger notion
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An important concept the Laplacian

LG Da Ag adjacency matrix

diag matrix of degrees

En Petz atLan Eg x



Cor setLg se 30 for any KEIR
i Lg is positive semidefinite PSD

LGY O

Defn Foo symmetric matrices A B
A Y B S A BY O

Fact If It is a k spectral approximator of G then
all eigenvalues of La are within k factorofthose

ht and hence the name spectral
sparsifiers

Thin Spielman Srivastava For any graph G there is
a Lte spectral sparsifier with O nlogn.to
edges can also be found in near linear time

How do we find a spectral sparsifier

Attempt can we randomly sample edges

Test case 1 complete graph expander
Works

Test case 2 Dumbbell

A Qp Expo

crucial edge



Not all edges are equally important

Uniformly sampling edges is bad

Need some way of figuringout how crucial an edge is

at Lax I u serf at Lur se u r

EEG career
is
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EEG

want to find H La Ise bebet
wtf e in H

St La E La E K La

Matrix Chernoff Bound Rudelson Alswedewinter Tropp

Suppose X is a dud matrix valued RV
with OE X M I and Efx I

If Xia Xu are independent samplesof X then

Poke I I E Xi e ke I 2d expt 534

very similar to the usual Chernoff bound



Geometric view quadratic forms as ellipsoids

Éatex
for th I

M La.ME MLAM K K MGM ManymPastnx

For M LE LE I try Millet

I I III
aint

I bebet MLGM I M bebetM

I Verlet
EEG

where ve LE be
Rephrasing our question

Given m vectors ve EEG from Inst
I VeVet I

find a sparse subset of these and weights
t
I Ise Vevet ite I



Revisiting our examples

D Complete graph kn

t
Doesn't change the picture at all

Dumb bell graph

I Really stretches out
crucial edges

Hell proxy for
how important the

t

edge e is



What is Ivell A Lot bell betto be
effective resistance

of edge e

Now we can do random sampling

Ive Vet I Let X be a random matrix
that is

yet
with prob pe

to bedefined

so that I Lxi I

Matrix Chernoff Bound Rudelson Alswedewinter Tropp

Let Xp Xu be i id random dud matrices
with O Xi M I E Lxi I

Then P II Xi Ill e sad exp Big
43

if KO Malaga

Xe Vegf
with prob pe

wait to minimise M Max get max

Ip
Optimal set pea Nelli



I Pe 1 Elwell I Trevevet
Tr Event n

so Pe Knelt Men in this case

Matrix chernoff says O z logn samplesenough

All of this car actually done in near linear time

Final Algo

compute M talk
17 For each edge e Luis compute Pe 112711
D Set H 0
I For it ka O nlogn Iz

sample an edge from G ace measure pe3
Add the edgeto It

I Return H
Yetually

OlmFgmpolyloglogen time

1

Vishnoi

Batson Spielman Srivastava With just ONE edges

interlacing

Marcus SpielmanSrivastava Interlacing polynomials



Eventually solved the kadison singer problem a host

of other problems To a statement in quantum

Weaver's conjecture equiv to ks
mi

Given vectors Vi Om ER s.t I Vivit I

and Niki Is A E Does there exist a partition
Em S U Sa s t

I Es 90th F 1 2 I

MSS Yes In fact G E IE 1EVivtIlEEtej.IiESb
for a constant e Offs


