Pseudorandomness - Lecture 14. Agenda: - Intro to pseudorandom generators - Hybrid argument. Instructor: Ramprasad. Date: 2021-10-07 Lecture #: 14.

What is a pseudorandour object/distribution? An object that exhibits some property that makes an observer think it was picked randomly. The stupid algo for max-cut pairurise à independence. E-blased distributions $(f) \quad \alpha_i$ - expandes walk. Emperical ang g samples ?? Any randomised algo running in time $O(n^2)$ Computational indistinguishability: Two RVS X, Y taking values in {0,13" is E-c.i for a class $C = \{T : \{0,1\}^m \rightarrow [-1,1]\}$ g test functions $\mathbb{E}[T(x)] - \mathbb{E}[T(y)] \leq \varepsilon$ for all TeC. That is, as far as "tests" from C are concerned,

they behave roughly similarly whether they are led X

ØХ

Υ.

(u, i, i2, -, i) (24441, u2, u3, -, utr) PRG for a class C: A map $G : \{0,1\}^d \rightarrow \{0,1\}^m$ is an \mathcal{E} -PRG for \mathcal{C} if the RVs \mathcal{U}_m and $G.(\mathcal{U}_d)$ are \mathcal{E} -comp. ind for C. ie, $\left| \underset{X \sim \mathcal{H}_{M}}{\mathbb{E}} \left[T(X) \right] - \underset{Y \sim \mathcal{H}_{A}}{\mathbb{E}} \left[T(G(Y)) \right] \right| \leq \varepsilon$ for all TEC. (Often, C correspondes to sige m² circuits De subclasses of "efficient computation") Again, we given care for families: $\{G_m: \{o_j\}^{d(m)} \rightarrow \{o_j\}^m\}$ Desire 6 - Wart d'as small as possible - Wart Gd (y) to be efficiently computable. $Defus \ \left\{ G_m : \left\{ 0, 1 \right\}^{d(m)} \longrightarrow \left\{ 0, 1 \right\}^m \right\} \ is \ t(m) - computable$ if there is an algorithm M s.t $M(1^m, \alpha) = G_m(\alpha)$, and M runs in time & $M(1^m) = d(m)$, t

Thim's Suppose for all
$$m$$
, there is $t(m)$ -comp. $\frac{1}{8}$ -PRG.
 $\{G_d: \{o_{31}\}^{d(m)} \rightarrow \{o_{31}\}^{m}\}$ for $\{C_m\}$ where C_m are
booleven firs compided by circuits $\{g\}$ size $\leq m$.

Then, BPP
$$\subseteq \bigcup$$
 DTIME $(2^{d(m^{\circ})}, (n^{\circ} + t(n^{\circ})))$
Pfs A is a rand algo numbers in time $\leq n^{\circ} = m$.
 $\Rightarrow A$ reses $\leq m$ random bils.
 $z \in L \Rightarrow \beta_{x}[A(z, r) = 1] \geq 2/3$
 $z \notin L \Rightarrow \beta_{x}[A(z, r) = 1] \geq 1/3$
Algs B (hand ∞):
 \Rightarrow Build a circuit T: $\{0, n^{m} \rightarrow \{0, 1\}$
 $T(r) = A(z, r)$
 \Rightarrow Build a circuit T: $\{0, n^{m} \rightarrow \{0, 1\}$
 $T(r) = A(z, r)$
 \Rightarrow Run over all $y \in \{0, 1\}^{m}$,
 $count \# y : A(z) = (.$
 $\Rightarrow Acc & Huis \# > \frac{1}{2} \cdot 2^{d(n)})$.
PlG gnaratee \Rightarrow B is correct.
Defno $\{G_{m}: \{0, 1\}^{d(m)} \rightarrow \{0, 1\}^{m}\}$ is
 $p = mildly explicit is it is poly(m, 2^{d(m)}) - computable$.
 $p = fully explicit is it is poly(m) computable.$
 $p = fully explicit is it is poly(m) computable.$
 $p = fully explicit is it is poly(m) computable.$
 $p = fully explicit is it is poly(m) computable.$
 $p = fully explicit is it is poly(m) computable.$
 $p = fully explicit is it is poly(m) computable.$
 $p = fully explicit is poly(m) computable.$
 $p =$

Intro For any meth and ero, then are REG (not explicit)
G:
$$\{0,1\}^d \rightarrow \{0,1\}^m$$
 for are meta-reacted burgh
d= $O(\log m + \log \frac{1}{2})$.
Pfs Pick G. $\{0,1\}^d \rightarrow \{0,1\}^m$ surformly at random.
Fix a circuit T & size m.
 $Fix = a$ circuit a PRG, then
 $Fix = 1 - exp(-\epsilon^2, 2^d)$
 $Fix = 2f = 2^d \cdot \epsilon^2 > \log m \log m$
 $= d = O(\log m + \log k)$ is suff.
 $Fix = a$ circuits with $O(\log m)$
 $= d = O(\log m + \log k)$ is suff.
 $Fix = a$ circuits with $O(\log m + \log k)$ - seed largh.
(nor will take arything! $d = o(m)$)

A "simple" requirement from a PEG
Define (Next bit superdictable) X my an fail^m is
(b,e)-NBU if there is no arouth g erze
$$\leq t$$

and no i $\in [m]$ with
 $P_{Y} \left[P(X_{1}...X_{t-1}) = X_{t} \right] = \frac{1}{2} + \epsilon$.
Griven a prefix, greesing the next bit is hard.
Lemmas If X^{-load^m} (t, ϵ)-pseudoradoun, then X is $(t-O(t), \epsilon)$
(busiersely, X is (t, ϵ) -pseudoradoun, then X is $(t-O(t), \epsilon)$
(busiersely, X is (t, ϵ) -pseudoradoun, then X is $(t-O(t), \epsilon)$
(busiersely, X is (t, ϵ) -nBU, then X is
 $(t, \epsilon m)$ -pseudoradoun.
Pfe (\Rightarrow): X was pseudoradom but next bit predictable
 \Rightarrow There is a circuit P and as index i
 st $P_{X} \left[P(X_{15}...X_{t-1}) = X_{t} \right] \ge \frac{1}{2} + \epsilon$
Q $\left\{ Algois an input Z_{1}...Z_{m}$.
Accept $Q = 2\epsilon = P(E_{15}...2\epsilon_{1})$
 $E[Q(U_{m})] = 1/2$. $E[Q(X)] \ge \frac{1}{2} + \epsilon$
 $diff.$ by ϵ .
(\notin): Given that X is $(t_{5}\epsilon)$ -NBU
Wart to show that X X_{2m} Um.
Hybrid, argument!

Ym= X 2m-2 ×m-1 2m $|\chi| - \cdot$ Ym-1 21 - -2m-z 2m-1 21 - - -2m-2 Um-1 Um Ym-2 Y 2, U2 lem Yo: U Um \mathcal{U}_{1} -Aime X= Ym ~ Ym-1 ~ Im-2 --- ~ ~ Yo $\Rightarrow \chi \stackrel{(.)}{\sim}_{ms} \mathcal{U}$ Suppose to Zne Ym. => there is a P s.t $E[P(Y_0)] - E[P(Y_m)] > m\epsilon$. $\Rightarrow \sum_{i=1}^{m} E[P(Y_{i-i})] - E[P(Y_i)] \ge m \varepsilon.$ $\Rightarrow \exists l : E[P(Y_{i-1})] - E[P(Y_{i})] \geq \mathbb{Z}.$ (by replacing P by -P is necc, no abs value) Yi-1 = X1-- Xi-1 Ui Uiti ... Um P is more Yi = Xi -- Xi - Xi Uit ... Um. Likely to acc Yi = Xi -- Xi -- Xi Uit ... Um. Yi - I than Yi Define a circuit P which gets input X1, ..., Xi-1. Pick Zi, ..., Zm at raidom. b= P(X1, ..., Xi-1, Zi, ..., Zm) If b=1, return Zc. else return Zi.

What is the prob that
$$\tilde{P}$$
 is right?

$$\alpha = R_{0} \left[P(X_{10} = X_{i-1} \times i, \mathcal{U}_{i+1,0}, \mathcal{U}_{m}) = 1 \right]$$

$$\alpha' = R_{0} \left[P(X_{10} = X_{i-1} \times i, \mathcal{U}_{i+1,0}, \mathcal{U}_{m}) = 1 \right]$$

$$R_{0} \left[P(X_{1,0}, X_{i-1}, \mathcal{U}_{i}, \mathcal{U}_{i+1,0}, \mathcal{U}_{m}) = 1 \right] = \frac{1}{2} \left(\alpha + \alpha' \right)$$

$$= \alpha' + \varepsilon$$

$$R_{0} \left[\tilde{P} \text{ is correct} \right]. \qquad i_{0} Z_{i} = X_{i} \quad d \quad b = 0$$

$$\alpha Z_{i} = X_{i} \quad d \quad b = 1$$

$$\frac{1}{2} \cdot \left(1 - \alpha'\right) + \frac{1}{2} \cdot \alpha' = \frac{1}{2} + \frac{1}{2} \left(\alpha' - \alpha'\right) \ge \frac{1}{2} + \varepsilon$$

How do we use this to build PRG3?

Toy case: stoetch
$$g = 1$$
.
 $G: \{o_i S^d \longrightarrow \{o_i S^{d+1}\}$
[Bluen-Micali] $G(a) = 2 b$
 $b: Hard Function (2c)$.
 $hard to guess!$

[Impagliazzo-Wigderson] If $E = DTIME(2^{O(n)})$ has a language that requires circuits of size $2^{\Omega(n)}$, then P = BPP.

.