Today
Sats-Zhou Theorem

$$
B P L \subseteq L^{3 / 2}
$$

$$
\cos 413.1
$$

Peudorandomners Lecture 16 (2021-10-21)
Instructor: Prahlach
Marsha.

Last throne: Nisans PRG for small space
Theorem: There is a PRG
$1 / n^{2}$-fools any O (logn)-space machine and furthermore G can be computed in space $O(\log n)$.

Naive derandomipation + (above) theorem

Today, an improvement
Theorem [Sate - Thou]

$$
B P L \subseteq \angle^{3 / 2}
$$

Open: $B P L \subseteq L$

Warmup:
Proof of $B P L \subseteq L^{2}$ (from Nransis PRG).
M. randomised TM (runs in O(logn) space)

the random Gits
 from the random tape the determinist c simulation invokes the PRO σ to alan the random Gits.

$$
\begin{aligned}
\text { Total space } & =O\left(\log ^{2} n\right)+O\left(\log _{n}\right)+O(\log 3) \\
& =O\left(\log ^{2} n\right.
\end{aligned}
$$

Space of Defermioniste Simulator.
(1) Random Spare (Space fo
(2) Processing Space. Coth Ged $2 \mathrm{~m} / \mathrm{C} M$).

Spare Bod Compulation = Matrix Exponentiononn
Space $3 \mathrm{~m} / \mathrm{c}$ can le expressed as a branching program

$$
\begin{aligned}
& M \in R^{W \times W} \\
& M[i j]=\text { RL Machine moves from } \\
& \text { sate of given that it } \\
& \text { is tate } i]
\end{aligned}
$$

Typically $M[i j] \in\{0,12,1]$ M. row stochastic matrix.
$M^{\top}[$ start, $a c \mathrm{c}]=$ determines if sp s acc.

BPL "reduces' to space-efficencompretatron matrex exponentrato
Wlog. $T=2^{r}$ power of 2)
Gy making acc 2 reg states as sint states).

Problem.
Inpat: MG $\mathbb{R}^{d x d}$
(stochastc matherx)
Qutpat: $\begin{aligned} & 2^{i, j} \in[a] \text { (exponentiaton paramete) } \\ & M^{2 r}[i, j]\end{aligned}$

$$
\begin{aligned}
& M \longleftrightarrow M^{2}
\end{aligned}
$$

$$
\begin{aligned}
& M^{2 r}=\underbrace{\left(\left(\left(M^{2}\right)^{2}\right)^{2} \cdots\right)^{2}}_{r \text { tmes. }}
\end{aligned}
$$

Space - O(rlog d).
Chservation: Sofff to compate M^{29} approxmately

Notron of appreximation

$$
\|A\|_{\infty} \triangleq \max _{c} \sum_{d}|A(i j)|
$$

Proper hes: (1) Subadditurity $\|A+B\|_{\infty} \leqslant\|A\|_{\infty}+\|B\|_{1}$
(2) Submultiplicatiriy: $\|A B\|_{\infty} \leq\|A\|_{\infty} \cdot\|B\|_{\infty}$
(3) $A, B, A_{1}^{\prime}, B^{\prime}$ - btochostc matreces

$$
\left\|A B-A^{\prime} B_{\infty}^{\prime} \leqslant\right\| A-A_{\infty}^{\prime}\left\|_{\infty}+\right\| B-B_{\infty}^{\prime} \|_{\infty}
$$

Problem:
Approximate Matrix Repeated Squarmg
(AMNS)
Input: M- dxd sub strchastic matrex 2^{r} - exponentraton parameles 2^{a} - accuracy parametep

Qutput: M^{\prime} - dxd. substochastc.

$$
\left\|M^{\prime}-M^{2^{x}}\right\|_{\infty} \leq{\frac{1}{2^{a}}}^{\text {matarr }}
$$

sul stochaste matirx

$$
\begin{aligned}
& -M\left(i_{i j}\right) \geqslant 0 \\
& -\forall e_{i} \sum_{j} M\left(i_{i j}\right) \leqslant 1
\end{aligned}
$$

Q68 1: Repeated Sacuarng solves AMRS exacts.

Parameters: d - dim materer
r - exponentiation paramete
a - accuracy parameter

$$
z=\max \{x, a, \log d\}
$$

Clogn scenarco, $s \approx r z a$
rlogd

$$
\simeq c(\log 0)
$$

QC8 2 Nisanis PRG yrelds a soln to AMRS, which we
will refer to Precidorandom Repeated Squaring (PRS)
Recall Nisan's PRG.

$$
\begin{aligned}
& G:[0,1]^{8+O(k s)} \longrightarrow[0,1]^{8 \cdot 2^{t}} \\
&\left(x, l_{1} \ldots l_{k}\right) \longmapsto \longrightarrow \frac{s \cdot 2^{k}-6 \cdot l_{s}}{\substack{\text { borg }}}
\end{aligned}
$$

G - constructible in $O(s)$-space.
for all $O(s)$-space $m / c T$.
Lemma: (Abstraction of Nisan's PRG). There exists an alloorthom PRS.
loput: M - deed. Sub stocharle 2^{r} - exp param
2^{a} - accuracy paramele

Qatpat: M^{\prime} s.f $\left\|M^{\prime}-M^{2^{a}}\right\| \leq \frac{1}{2^{a}}$
w/ prob $t-\varepsilon$ over the chore of e^{-}

RS	PRS $(N i s a n)$	$S Z$
0	$O(r 8)$	$O(\sqrt{r 8})$

Processing Space $(4 r 8) O(8) O(\sqrt{8} 8)$

Idea: Che PRS recursively

$$
\begin{aligned}
& r=r, r_{2} \\
& M^{r^{r}}=\underbrace{((\underbrace{}_{2^{r_{1}}})^{2^{r_{1}}})^{2_{1}} \ldots)^{2^{r_{1}}} . .}_{r \text { tomes. }}
\end{aligned}
$$

More precisely

$$
\begin{aligned}
& \Lambda^{(x)}(M)=M^{2^{r}} \\
& \Lambda^{(x)}(M)=M^{2 r}=\left(M^{(r, 1}\right)^{r}(M)
\end{aligned}
$$

Algor thmically

$$
N_{0} \leftarrow M
$$

For $e<1$ to r_{2}
Idea: $\underbrace{N_{c} \leftarrow N_{c-}}_{\text {cue PeSt }} \begin{gathered}N_{c}^{2} \\ \text { perform this sep }\end{gathered}$
How ?

$$
\begin{aligned}
& \text { Peck } l_{1} \ldots l_{r} \leftarrow\{0,\}^{r, s} \\
& M_{0} \leftarrow M \\
& \text { For } \quad \cdot \leftarrow 1 \text { to } r_{2} \\
& M_{c} \leftarrow \operatorname{PRS}\left(M_{c-1}, r_{2}, q ; l_{0}\right)
\end{aligned}
$$

Random space ri $O(r, s)=O(r s)$
Processing space r $O(8)$ - $O($ res 8$)$
Ln: Can we use the same seed $\bar{l} G$ all or means of PRS? n, Does the following alg wat Prat $\bar{l}<[0,1\}^{\text {Or, } s)}$

$$
\left\{\begin{array}{l}
M_{6}<M \\
\text { Tr } \leftarrow<1 \text { to } r_{2} \\
M_{c} \leftarrow \operatorname{PRS}\left(M_{c-1}, R, a, j\right)
\end{array}\right.
$$

Unfortunately, we don't know how to prove this works as the M's are not independent of the random seed l.
\bar{l} - works w/ N_{c}^{\prime} s lat not $M_{c}^{\prime} s$.

Idea 2:
Truncate M_{c} to f Gats of accuracy.
More precisely,

$$
z \in \mathbb{R}, \quad\left\langle z_{t}=2^{-t} L 2^{t} z\right]
$$

Truncation.
$L M S_{G}$ - entry-by-entry truncate.
$\overline{T s}$ ensure the truncation of $M_{\mathrm{L}}+\mathrm{Ne}_{e}$ are identical

- perturb every entry

Perturbation.

$$
\begin{aligned}
& f \in(0,1) \quad z \in \mathbb{R} \\
& \sum_{\delta} z=\max \{z-\delta, 0\} \\
& \sum_{\delta}(M) \text { - entry-by-entry perturitation. } \\
& \text { AMRS - Algorithm }
\end{aligned}
$$

roput. M. dxd substoctastry
$2^{r}-\exp \quad\left(r=r, r_{2}\right)$.
2^{a} - accuracy
E- truncation parcomete
K- perturbation parameter

$$
\begin{aligned}
& k \geqslant t \\
& K=t+D \quad(D \geqslant 0) .
\end{aligned}
$$

Random: $\bar{l} \leftarrow\{0,1]^{\text {rss }}$

$$
\left.q_{1}, q_{2} \ldots \quad q_{r_{1}} \in 2^{0}, 1\right]^{3}
$$

$$
\left[q_{i} \in\left[0,2^{x}-1\right]\right.
$$

1. M<M
2. Jor e, to r_{2}.

$$
\begin{aligned}
& M_{c}^{\prime} \leftarrow \operatorname{PRS}\left(M_{c-1}, r_{1}, a ; \bar{\ell}\right) \\
& \tilde{M}_{c} \leftarrow \sum_{\delta_{c}}\left(M_{c}^{\prime}\right)
\end{aligned}
$$

3. Ocetpat $M_{r_{2}}$

Meta Algouthm:

$$
\left\{\begin{array}{l}
N_{0} \leftarrow M \\
\text { Sor } e \leftarrow 1 \text { to } r_{c} \\
N_{e}^{\prime} \leftarrow N_{c-1}^{2^{r_{1}}} \\
\tilde{N}_{c} \leftarrow \sum_{\delta_{c}} N_{c} \text { where } \delta_{c}=\frac{q_{c}}{2^{k}} \\
N_{c} \leftarrow\left\langle\left.\tilde{N}_{c}\right|_{t}\right.
\end{array}\right.
$$

Missing theorem struts to complete SZ analysis.

Main Theorem [Saks Ehou]
The output M_{2} of AMPS-algorithon approximates

$$
\begin{aligned}
& \text { oximates } \\
& \text { accuracy } \frac{2^{-D+2 r+\log } \frac{\omega}{2}}{2^{k}}
\end{aligned}
$$

and error probability at most

$$
r_{2}\left(\varepsilon+2 d^{2} / 2^{x}\right)
$$

This form is proved via the following intermediate clams.

Clam 1: For any choice of $9, \ldots 9_{r} \in\{0,1\}^{D}$ the sequence $N_{0}, N_{\text {r..... }}$ Nr e satisfies

$$
\| N_{r_{2}}-M^{2^{r}} / / \infty \frac{2^{D+2 r+\log d}}{2^{k}}
$$

Detrition:
(1) We say that a random seed \bar{l} is (M, ε)-good if.

$$
\left\|\operatorname{PRS}\left(M, r_{1}, \log _{\varepsilon} \frac{l}{i} l\right)=M^{2^{H}}\right\|_{\infty} \leqslant \varepsilon .
$$

(2) A real number r is (b, t)-dangerous for positive integers $b>t$
$r=2^{-t} I+p$ for some integer I

$$
\& p \in\left(-2^{-6}, 2^{-6}\right)
$$

Claim: If the random seeds $l=$ 9... qr satisfy the following two properties
(a) $\forall i \in\left[r_{2}\right]$, none of the entries in any of the matrices \tilde{N}_{c} are (K, t)-dangerous
(b) \bar{l} is $\left(N_{i}, s\right)$-good for $\forall e \in\left[r_{2}\right]$ the $M_{r_{r}}=N_{r_{2}}$ (intact $M_{c}=N_{e}$, $\forall e \in \operatorname{rg}_{q_{1}}$)

Clam 3: For any 9... $9_{r_{2}} \in\{0,\}^{D}$

$$
\bar{P}_{\bar{e}}\left[J_{c} \in\left[r_{2}\right], \tilde{l} \text { is not }\left(N_{c}, \varepsilon\right)-\text { good }\right] \leqslant r_{2} \varepsilon
$$

Clam 4: $P_{r}\left[\exists e \in\left[\xi_{s}\right], \tilde{N}_{e}\right.$ is ($\left.k, t\right)$-dangerous] 9 ... q_{r} $\leqslant 2 r_{2} d^{2} / 2^{0}$.

