Revisiting NBU:
Define
$$G_1: \{o_{31}\}^d \rightarrow \{o_{31}\}^m$$
 is \mathcal{E} -next hit predictable
by a class $C_1 = \exists i \in [m]$ and $A \in C$
such that
 $P_r \left[A \left(\chi_{12} - \Im \chi_{i-1} \right) = \Im i \right] \geq \frac{1}{2} + \mathcal{E}.$

Lomma: G is
$$\mathcal{E}$$
 PRG for size $s \Rightarrow G$ is \mathcal{E} NBU for size.
And, G is \mathcal{E} NBU for size $s \Rightarrow$ G is me-PLG for size.
(Saw in lecture 13).
How do not build PRGs?
 \Rightarrow Toy case: Getting stretch 1. ie $d \rightarrow d+1$
 $G(\mathfrak{A}_{1},\ldots,\mathfrak{A}_{d}) = \mathfrak{A}_{1},\ldots,\mathfrak{A}_{d}, g(\mathfrak{A}_{1},\ldots,\mathfrak{A}_{d})$
for some $g: \{o_{1}\}^{d} \rightarrow \{o_{1}\}^{d}$
hihat do not want from g ?
For any size s circuit C, we want.
 $P_{0}\left[((\mathfrak{A}_{1},\ldots,\mathfrak{A}_{d}) - g(\mathfrak{A}_{1},\ldots,\mathfrak{A}_{d})\right] \leq \frac{1}{2} + \mathcal{E}$
 \mathcal{E} -hard to even guess $g(\mathfrak{A})$ on a randomly chosen
 \mathfrak{A} . " g is \mathcal{E} -hard to guess by eize s cells"
... " g is \mathcal{E} -hard to guess by eize s cells"
... $\mathcal{H}_{0} \left[(\mathfrak{A}_{1},\ldots,\mathfrak{A}_{d}) - g(\mathfrak{A}_{1},\ldots,\mathfrak{A}_{d})\right] \leq \frac{1}{2} + \mathcal{E}$
 \mathcal{E} -hard to even g uses $g(\mathfrak{A})$ on a randomly chosen
 \mathfrak{A} . " g is \mathcal{E} -hard to guess by eize s cells"
... \mathcal{H}_{0} by \mathcal{E} can find a "hard" function g , then
we have a PRG that stretches by \mathfrak{L} but. Meh.
More stretch ":
 $G: \{o_{1}\}^{d} \rightarrow \{o_{1}\}^{d} \rightarrow \mathfrak{E}^{(i)},\ldots,\mathfrak{A}^{(i)},\ldots,\mathfrak{E}^{(\alpha^{(i)})},\ldots,g(\alpha^{(e)})$.
Same argument will show that G is NBU.
Now stretches by \mathfrak{L} bits... offil Meh.

How do we get more stretch? why?!
If g is acting on disjoent subset & seed
bits, then output length <
$$\frac{d+1}{d}$$

Idea: What if g acts on "almost disjoent" subsets?

Dyne (combinational designs): A collection of subsets

$$S_{1,...,} S_m \subseteq [d]$$
 is an $(1,a)$ design if they
satisfy the following properties.
 $\Rightarrow |S_i| = L$
 $\Rightarrow |S_i \cap S_j| \prec a$ whenever $i \neq j$.

We want a "large" collection of small-ish sets with very small pairwise intersection.

Do such designs exist?
Let's try to pick random sets one at a time.

$$S_{1,2,..,} S_{t}$$
 already picked. S_{t+1} chosen at random.
 $P_{r}[S_{t+1} \text{ is valid}]: P_{r}[|S_{t+1} \cap S_{t}| < \alpha \quad \forall i \in [t]]$
 $\stackrel{\circ}{\sim} P_{r}[S_{t+1} \text{ is not valid}] \leq \sum_{i} P_{r}[|S \cap S_{i}| \ge \alpha]$

$$\begin{aligned} & P_{r}\left[\left| \mathcal{G} \cap \mathcal{S}_{i} \right| \geqslant a \right] \leq \left(\frac{l}{a} \right) \cdot \left(\frac{d}{l-a} \right) & (\bigstar) \\ & \left(\frac{d}{l} \right) \\ & \left(\frac{d}{l-a} \right) = \left(\frac{d}{l-a} \right) \left(\frac{d}{d-l+a} \right) & \frac{l!}{d} \left(\frac{d-l}{l-b} \right) = \frac{l!}{(l-a)!} \frac{a!}{a!} \frac{(d-l)!}{(d-l+a)!} \\ & = \left(\frac{l}{a} \right) / \left(\frac{d-l+a}{a} \right) \leq \left(\frac{d}{a} \right) / \frac{d-l}{a} \end{aligned}$$

$$\stackrel{\circ}{\sim} P_{r}\left[\left|S_{i} \cap S\right| \ge \alpha\right] \le \left(\frac{a}{a}\right)^{2} \left(\frac{a}$$

is As long as
$$t < \binom{d-l}{a}$$
, we have
 $P_{\mathcal{S}} [|S \cap S_i| \ge a \text{ for some } i] < 1.$
=) There exists a good S to continue.

So There exist (1,a) designs involving $\binom{d-l}{a}/\binom{d}{a}^2$ sets.

$$l = 10 \log n. \qquad a = \log n \qquad d = 1000 \log n$$

$$(d^{-1}) \approx n^{10.4} \qquad (a) \approx n^{10 H(Y_{10})}.$$

$$\approx n^{4.6}$$

$$\approx n^{4.6}$$

More generally, for any
$$l \ge 2a$$
, we can find comb. designs
 $S_{13} - 3m \subseteq [d]$ with $m = 2^a$ and $d = 2l^2/a$.
Are there explicit constructions? Yes! (PSET 3 :-))
What do we do with this?

Suppose h:
$$\{0,1\}^{l} \rightarrow \{0,1\}^{l}$$
 is a "hard to guess"
function, then here is a condidate generator:
 $G: \{0,1\}^{d} \rightarrow \{0,1\}^{m}$
 $G(Z_{1},...,Z_{d}) = (h(Z|s_{1}),...,h(Z|s_{m}))$

Thmo Suppose C is a circuit of size
$$\leq s$$
 that
[NW] ε -next bit predicts G, then we can build a
circuit C' that $\frac{1}{2} + \varepsilon$ approximates h, with
size (C') $\leq s + m \cdot 2^a$.

In other words, if h is hard enough, then G is indeed a PRG.

Eq: Suppose
$$\{h_r: \{0, i\} \rightarrow \{0, i\}\}$$
 is \mathcal{E} -hard to given for size $S(r) = 2^{r/100}$
 $G: \{0, i\}^d \longrightarrow \{0, i\}^m$, NW generator with $a = \log m$, $l = 100 \log (m^3)$, $d = \Box \log m$.
with h_l used inside.
 $I_l G$ is Next-bit-predictable by size m exts, then

Obs: Each
$$y^{(i)}$$
 is only 'a' variables !
.: Each $h^{(j)}(y^{(i)})$ can be computed by a stepid
aircuit g size 2^{a} .

$$\frac{c}{1+1} = c'.$$

$$h_{a} = --- = a^{a}$$

$$h_{a} = (c') = h(y) = \frac{1}{2} + \varepsilon.$$
and size $(c') \leq size(c) + m \cdot a^{a}$.

Avg case hardness:
Any circuit C Z size
$$\leq 3$$
,
 $P_2 \left[C(2r) = h(2r) \right] \leq \frac{1}{2} + \varepsilon$
Any small circuit makes lots Z mistakes.

Worst-case hardness:

Any circuit C g size s makes <u>some</u> mistake. ie $\exists x s$ $C(x) \neq h(x)$.