Pseudovardonness: Lecture 21.

Agenda's [Giv Im]: For any cast
$$\alpha > 0$$
. For all n, k and $z > 0$, there
is an explicit (k, c) -extractor $Ext: [N] \times [D] \rightarrow [M]$
with $M \ge (1-\alpha) \cdot k$ and $d = O(\log [n/z])$.
Recaps > If n is small, then $Ext_{\mu}(x, h) = (h, h(x))$
is a (k, c) -ortractor with $m \cdot k - d\log 1/z$.
(but seed length n)
> If $(X_{1, 0}, \cdot, X_{t})$ is a $(k \times t)$ -block sources
then we can extract randomments by paying for
just one sed block
Something that we'll use very after this class:
Levona's (Residual edway)) Say X is a k -source and W
is a correlated RV , with $sup(W) \le d$. Thus, for
any $e>0$, with $pob \ge 1-e$ over $w \sim W$, $X [W \cdot w is$
a $(k - l - \log \frac{1}{2}) - source.$
Pfs $Bad_{W} = \{w: R_{s}[W - w] \le e/2t \} \Rightarrow R[W \in Bad_{W}] \le E$
Fix any $w \notin Bad_{W}$.
 $\frac{1}{2} \ge R_{s}[X = z] \ge R_{s}[X = z, W = z] = R[W - w]$. $R_{s}[X = z [W = w]$
 $\ge \frac{e}{2t}$. $R_{s}[X = x [W = w] \le \frac{1}{2}$.
 $\Rightarrow R_{s}[X = z][W = w] \le \frac{1}{2}$.

Does this wook?

$$(Z_1, \times) \longrightarrow (Z_1, Ext(X, U_a)) = (Z_1, Z_2)$$

With $prob \ge 1-\varepsilon_3$ over $Z_1 = g_1$, we know that $X|Z_1 = g_1$ has endropy $z = k - k_{2} - \log \frac{1}{\varepsilon_3} = \frac{k_3}{3}$

With prob
$$\geq 1-\varepsilon_3$$
, $(3_1, z_2) \sim_{z_2} U$
 $\delta_0 (z_1, z_2) \sim_{c_1+\varepsilon_2-1\varepsilon_3} \delta_0$ the uniform dist.
 δ_0 If we have a way δ_0 using $O(\log h/\varepsilon)$ seed to
extract k_{2} bits, then we can also extract
any $(1-d)k$ bits resing just $O_{\alpha}(\log h/\varepsilon)$ seed.

Then [GUV weaker]: For any
$$o < x < 1$$
, $n > k > 0$ $\varepsilon > 0$,
there is an explicit $Ext_{k}: [N] \times [D] \rightarrow [M]$ $(k_{2}) - ext$.
with $m = k/2$ and $d = O(\log^{n}/\varepsilon)$.

Another application: (any high entropy source is close to a block source)

Lemmas Suppose X is an $(n-\Delta)$ -source. Then for any e>o, X: (X_1, X_2) is an $(n_1-\Delta, n_2-\Delta-\log/e)$ -source Pf: X1 an n-A source; $\operatorname{Po}[X_1 = \alpha_1] \leq \sum_{n=1}^{\infty} \operatorname{Po}[X = \alpha_1 \alpha_2] \leq \frac{1}{2^{n-\alpha}} \cdot \alpha^{1/2} = \frac{1}{2^{n/-\alpha}} \cdot \alpha^{1/2}$ To show that X2 X1=2, has high - minertopy (w.h.r.) just use the REL. $\Rightarrow X_2 | X_1 = \alpha_1 \quad \text{is an } M_2 - \delta - \log |_{\mathcal{E}} \quad \text{src} \quad w.p \geq 1 - \mathcal{E} \quad \text{over } \alpha_1$ is If min-entropy (x) is really high, then we can just break X into blocks and get a block source. What if it was not this high? Defne (Condenseurs) loude [N] × [D] → [M] is a (k→k', E) condenser if for any k-source X, we have that Cond(X, Ud) ~ Y where y is a k-source. The condenser is loss-less if k'= k+d. We would want k/m >> k/n so that "entropy density" me.

Then: (Gurus Nami-Umans Vadhan) For any
$$x > 0$$
, and $n \ge k$ and
 $\varepsilon > 0$, there is an explicit $k \longrightarrow_{\varepsilon} k + d$ lossless condenser
 $cond \ge [N] \times [D] \longrightarrow [M]$
with $m = (1 + k) k + O(\log n/\varepsilon)$ and $d = O(\log n/\varepsilon)$.

Putting this all together.
Lemma: For any
$$t > q$$
 and $n > k$ and $z > 0$, there is an explicit (k, ε) - extractors $BBExt's [N] \times [D] \rightarrow [M]$ with $m \ge k/2$ and $d = \frac{k}{\epsilon} + O(\log n/\epsilon)$. $\alpha \ll \frac{1}{\epsilon}$
If sketch's $\longrightarrow ford \rightarrow \bigoplus k_{U+\epsilon}$
Using $\longrightarrow Ext}$ $\longrightarrow ford \rightarrow \bigoplus k_{U+\epsilon}$
 $k_{U+\epsilon}$
 $k_{U+\epsilon}$

Base cases $i(k) = 0 \Rightarrow k \leq 8d$. \Rightarrow We have such an ext. by the previousna. Inductive steps Say $i(k) \ge 1$. and we have Ext_k for all k' with i(k') < i(k).

But we would k/2 random bits... we arry have k/6 bits => fluere are 5k/6 bits still in the system. [REL] => We can extract another 1/6th of fluet. => There are [5/6 3 bits still in the system.

$$(\underbrace{5})^{4} \times \underbrace{1}_{2} \Rightarrow 4 \text{ applications g REL}$$
gives us what we want.
 σ_{o}^{*} Total seed : $4\left(O(\log \frac{n}{2\sigma}) + \frac{2d}{16} + O(\log \frac{n}{2\sigma})\right)$
 $Gord$.
 $\leq d$
Total error : $\mathcal{E}_{i(n)} \leq 4\left(3\mathcal{E}_{o} + \mathcal{E}_{i(n)-1}\right) = 16$. $\mathcal{E}_{i(n)-1}$
And $i(n) = \log n \Rightarrow \mathcal{E}_{i(n)} = \mathcal{E}_{o} \cdot \operatorname{pdy}(n) \leq \varepsilon$. \Box

GUV Graph: G:
$$Fq^n \times fq \rightarrow Fq^{m+1}$$
. Fix $E(x) \in Fq[x]$,
 $Rot_G(f, \gamma) = [f^{(0)}(\gamma), f^{(1)}(\gamma), ..., f^{(m)}(\gamma)]$ irred & degree $n-1$
where $f^{(i)} = f^{h^i} \mod E(x)$. (h is a parameter).
(Based an Parvaresh - Vardy codes).
Lemma: The above graph is a $(\leq K, A)$ -vertex expander
 $fDs \quad K = h^m$ and $A = q - (n-1)(h-1)m$.
Can suitably set parameters to get
 $d = (1 + \frac{1}{x}) \cdot \log(\frac{Ank}{E})$, $m \leq 2d + (Hx) \cdot k$

Next: Trevisan's extractor

(Interpreting the NW PRG in this framework).