

Os equivalently:

$$\begin{bmatrix} \text{List}_{p}(f, \mu(f)+\epsilon) \end{bmatrix} \leq S. N \quad \text{for any } f:[H] \rightarrow \text{Eosil.}$$

$$(\text{if sampler only for sets (aka. boolean averaging sampler), replace above with TSEN]).$$

$$Typical setting: N = poly(M/S), D = O(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta})$$

$$\text{Coding theory: Enc: } F_{q}^{a} \rightarrow F_{q}^{b}$$

$$Thenk & \text{this as } \Gamma: F_{q}^{a} \times [b] \rightarrow [b] \times F_{q}.$$

$$\Gamma(x,i) = (i, \text{Enc}(x)_{i})$$

$$\text{Griven a received word, we don't want too many close codewords...}$$

$$If T = \left\{ (i, y_{i}): i \in [b] \right\}, \text{ want}$$

$$\int \text{List}_{p}(T, "agreement]) \right\} \leq "small".$$

$$\text{RHS: } [N] = F_{q}^{a}. D = b \qquad M = F_{q}. b.$$

Valex expanders:

$$\begin{pmatrix} (=k,A) - relex expander) \\
\Rightarrow all sets g sige k a left have $\geq Ak^{2}$ neighbours

$$\begin{bmatrix} N & [N] & [N] \\
TI < Ak \Rightarrow |List_{p}(T,I)| < k.
\end{bmatrix}$$
Extractors:

$$\begin{pmatrix} k, e \end{pmatrix} - extractor \\
\Rightarrow any SS[N] g sige \geq k \\
must be close to miniform on the right.
\end{bmatrix}$$
Claim's (a) If $Ext: [N] \times [D] \rightarrow [M]$ is a $(k_{S}e)$ -extractor, then for every f: $[M] \rightarrow [D_{S}I]$, we have

$$\begin{bmatrix} List_{p}(f, \mu(f) + e) \\
Hen Ext is a $(k + \log \frac{1}{2}, Ae)$ -extractor.$$
Pfs (a). Say f: $(M) \rightarrow (D_{S}I)$ with $|List_{p}(f, \mu(f) + e)| \geq k.$
Take X to be the runiform dial on f .
Nirentropy $(X) \geq k.$

$$\begin{bmatrix} E \\ (E(Ea_{S}Y)) \end{bmatrix} > \mu(f) + e = |E[f] + E = >E \\
\end{bmatrix}$$$$

(b) Fix a
$$k + \log \frac{1}{2} - source X$$
. Fix $T \subseteq (M)$.
and let $L = List_{p}(T, \mu(T) + \varepsilon)$
 $R_{\delta}[Ext(X, U_{d}) \in T] \leq R_{\delta}[x \in L] + R_{\delta}[Ext() \in T]x \notin L]$
 $\leq K \cdot \frac{1}{2^{k+\log/2}} + \mu(T) + \varepsilon = \mu(T) + 2\varepsilon$. II.
Ext $\stackrel{\sim}{\Longrightarrow}$ $|List(T, \mu(T) + \varepsilon)| < K$ $\forall T \leq CM$].
for ε Samplers \Leftrightarrow extractors for suitable parameters.
(No wonder expanders & hash fis had extractor like
properties).
PRGs, however, appear to be different... there is a "computational

Let's revisit the NW PRG. We start with
$$f_{s}\{o_{s}\}^{k} \rightarrow \{o_{s}\}$$
.
 $G_{NW}^{f}(Y_{1}, y_{l}) = (f(Y_{1}|s_{1}), f(Y_{1}|s_{m}))$
where $S_{1}, y_{l} = (f(Y_{1}|s_{1}), f(Y_{1}|s_{m}))$
 $|S_{l}| = k$ $|S_{l} \cap S_{j}| < \alpha$.

Rough proofs T_{c} we have a distinguisher C, then we can use C to build a circuit C' that computes fIf C is small, then so is C' and that contradicts hardness g f. $S_{c,c}^{*} \rightarrow \{c_{c}\}$

Defno (Blackbox PRG constanctions) A generator Gy: {0,13 > {0,13, defined for every fE[H] is said to be a (6,9, e)-BB-PRG if, there is an oracle procedure Recon summing in time t st for every fE[H] and an E-distinguisher C, there is an advice string ZE[R] such that $C' = \operatorname{Recon}(y, z) = fy$ for all y. (NW appears to fit into this right? More on this later.) Trevisan: BB-PRGs immediately yield extractors! Thm (Trevisan) & Let Gf: {0,13 -> {0,13 , def for all fE[H], be an (x, r, r)-BB PRG. Then, the map $[1 : [H] \times [L] \rightarrow [M]$ $\frac{\Gamma:(f,\gamma) = G^{f}(\gamma)}{\text{is an } (r+\log/\epsilon, 2\epsilon) - \text{extractor}} \Rightarrow \left| \text{List}_{n}(T,\mu(\epsilon)+\epsilon) \right| \leq R$ Pfs TS[M] Listp(T, M(T)+E)= {f: Bo[N(f,y) eT]> pt+2} 0° If fE List, then T is an E-distinguisher. $\Rightarrow \exists z \in [R] \quad s.t \quad Recon(., z) = f$ \Rightarrow $|List_{P}(T, \mu(T) + \varepsilon)| \leq R$

Д.

Is the NW PRG a blackbox construction?

$$f \in \{0,1\}^{k} \rightarrow \{0,1\}$$
. $S_{1,2}, S_{m}$ is a $(k, flogm) - NW$
 $design$. $Si \leq [d]$ with $d = 2k^{2}$
 $G^{f}: [D] \rightarrow IM$
 $G^{f}(Y) = (f(Y|s_{1}), \dots, f(Y|S_{m}))$
Suppose $T: \{0,1\}^{m} \rightarrow \{0,1\}$ is an e-distinguisher.
NBP: $Z_{1 \rightarrow m}$
 $Z_{i,1} \rightarrow \begin{bmatrix} Z_{i,2}, Z_{m} = \nabla_{i,2} & \nabla_{m} \\ b \equiv T(Z_{1,2}, Z_{m}) \end{bmatrix} \xrightarrow{T}$
 $J \in e[m] \ T_{i,2} \dots T_{m} : P_{Y} = [T(Z_{1,2}, Z_{i,1}) = 2i] \implies \frac{1}{2} + \frac{E}{m}$
 $advice.$

Building a circuit for
$$f(\cdot)$$
.
 $y \in \{0,1\}^k$

 $T \in \{0,1\}^k$

U

YE [D] with
$$d = O((k+\log(V_S))^2/1\log^n)$$

Advice for the Reconstruction:
NSP D i E[m], To, ..., Ym E[0,3]
 $D \nabla' E[0,3]^{k}$, $f^{(1)} \dots f^{(n)}$; $\{b, i_{3}^{n} \rightarrow [b_{1}]^{k}$, $d + m \cdot 2^{n} = d + m^{1+1}$
 $D A_{11}$ index within the decoded $d + m \cdot 2^{n} = d + m^{1+1}$
 $D A_{11}$ index within the decoded $d + m \cdot 2^{n} = d + m^{1+1}$
 $D A_{11}$ index within the decoded $d + m \cdot 2^{n} = d + m^{1+1}$
 $D A_{11}$ index within the decoded $d + m \cdot 2^{n} = d + m^{1+1}$
 $D A_{11}$ index within the decoded $d + m \cdot 2^{n} = d + m^{1+1}$
 $D A_{11}$ index within the decoded $d + m \cdot 2^{n} = d + m^{1+1}$
 $D A_{11}$ is $(k + k_{0} \neq k_{0})^{2}$
 $Total advice length $e = m^{1+1} + O(\log \frac{m}{2} + d)$
Thus: For any $1 \ge 0$, ero and $l, m \in \mathbb{N}$, we have an
 $M_{11} \oplus M_{11} \oplus M_$$

Next:	An	exposition	Øn	2-source	extractors.	
	L	connections	s fo	Ramsey	graphs-	