Pscudorandonness: Lecture 22
Agenda: - Unified view of pseudorandom obis.

- Trevisan's Extractor.

Instructor: Ramprasad.
Date: 2021-11-16
Lecture \#: 22

G

Def: (List decoding view). For any $T \subseteq[M]$, define

$$
\operatorname{List}_{\Gamma}(T, \varepsilon)=\left\{x \in[N]: \operatorname{Pr}_{y \in[D]}[\Gamma(x, y) \in T]>\varepsilon\right\} \text {. }
$$

Generalising to $f:[M] \rightarrow[0,1]$, define

$$
\operatorname{List}_{\Gamma}(f, \varepsilon)=\{x \in[N]: \quad \underset{y}{E}[f(x, y)]>\varepsilon\} .
$$

What is a Sampler in this language?
Camp: $[\mathbb{N}] \rightarrow[M]_{\text {sample. }}^{t}$

$$
\begin{aligned}
& \Gamma(x, y)=(\operatorname{samp}(x))_{y} \\
& \Gamma:[N] \times[t] \rightarrow[M] .
\end{aligned}
$$

rad bits.

If sampler is a (δ, ε)-averaging sampler, then.

$$
P_{x}\left[\frac{1}{t} \sum_{y} f(\Gamma(x, y))>\mu(f)+\varepsilon\right]<\delta .
$$

for every $f:[M] \rightarrow[0,1]$.
Or equivalently:
$\left.\mid \operatorname{List}_{\Gamma}(f) \mu(f)+\varepsilon\right) \mid \leqslant \delta \cdot N$ for any $f:[M] \rightarrow[0,1]$.
(if sampler only for sets (aka. boolean averaging sampler), replace above with $T \subseteq[M]$).
Typical setting: $N=\operatorname{poly}(M / \delta), \quad D=0\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta}\right)$
Coding theory: Enc: $\mathbb{F}_{q}^{a} \rightarrow \mathbb{F}_{q}^{b}$
Think of this as $\Gamma: \mathbb{F}_{q}^{a} \times[b] \rightarrow[b] \times \mathbb{F} q$.

$$
\Gamma(x, i)=\left(i, \operatorname{Enc}(x)_{i}\right)
$$

Given a received word, we don't wait too many close codewords...

If $T=\left\{\left(i, y_{i}\right): i \in[b]\right\}$, wart

$$
\mid \operatorname{List}_{\Gamma}(T, \text { "agreement } \underset{\text { threshold }}{ }) \mid \leq \text { "small". }
$$

RHS: $[N]=\mathbb{F}_{q}^{a} . \quad D=b \quad M=\mathbb{F}_{q}, b$.

Vertex expenders:

[N]

[M]
$(=k, A)$-vertex expander
\Rightarrow all sets of sage k on left
\Downarrow
$|T|<A k \Rightarrow\left|\operatorname{List}_{\Gamma}(T, 1)\right|<k$.

Extractors:

(k, ε)-extractor
\Rightarrow any $S \subseteq[N]$ of size $\geqslant k$ must be close to uniform on the right.
[M].
Claim: (a) If Ext: $[N] \times[D] \rightarrow[M]$ is a (k, ε)-extractor, then for every $f:[M] \rightarrow[0,1]$, we have

$$
\left|\operatorname{List}_{\Gamma}(f, \mu(f)+\varepsilon)\right|<k
$$

(b) Suppose $\left|\operatorname{List}_{\Gamma}(T, \mu(T)+\varepsilon)\right|<K$ for all $T \subseteq[M]$, then Ext is a $\left(k+\log \frac{1}{\varepsilon}, 2 \varepsilon\right)$-extractor.
Pf: (a). Say $f:[M] \rightarrow[0,1]$ with $\left|\operatorname{List}_{n}(f, \mu(f)+\varepsilon)\right| \geqslant k$. Take X to be the uniform dist on f.
mineutropy $(x) \geqslant k$.

$$
\underset{\substack{x \sim x D D}}{E}[f(E(x, y))]>\mu(f)+\varepsilon=\mathbb{E}[f]+\varepsilon \Rightarrow E
$$

, …
(b) Fix a $k+\log \frac{1}{\varepsilon}$-source X. Fix $T \subseteq[M]$. and let $L=\operatorname{List}_{\Gamma}(T, \mu(T)+\varepsilon)$

$$
\begin{gathered}
\left.\operatorname{Pr}\left[\operatorname{Ext}\left(X, U_{d}\right) \in T\right] \leqslant P_{r \sim}[x \in L]+P_{r}[E x t() \in T) x \notin L\right] \\
\leqslant k \cdot \frac{1}{2^{k+\log _{\varepsilon}}}+\mu(T)+\varepsilon=\mu(T)+2 \varepsilon
\end{gathered}
$$

Ext $\quad \approx \quad|\operatorname{List}(T, \mu(T)+C)|<K \quad \forall T \subseteq[M]$.
Cor: Samplers \Leftrightarrow extractors for suitable parameters.
(No wonder exparders \& hash frs had extractor line properties)
PRGs, however, appear to be different... there is a "computational (or is it?) requir ement".

Let's revisit the NW PRG. We start with $f:\{0,1\}^{k} \rightarrow\{0,1\}$.

$$
G_{w w}^{f}\left(y_{10}, y_{l}\right)=\left(f\left(\left.y\right|_{s_{1}}\right)_{2}, f\left(y \mid s_{m}\right)\right)
$$

where $S_{12}, S_{m} \subseteq[l]$ is a (k, a)-comb. design.
Rough proof: If we have a distingnisher C, then we can use C to build a circuit C^{\prime} that computes f If C is small, then so is C^{\prime} and that coutradicts hardness of f.

$$
\{0,1\}^{k} \rightarrow\{0,1\}
$$

Def: (Blackbox PRG constructions) A generator $G_{f}:\{0,1\}^{l} \rightarrow\left\{\theta_{0} 1\right\}^{m}$, defined for every $f \in[H]$ is said to be a $(t, r, \varepsilon)-B B-P R G$ if, there is an oracle procedure Recon running in time t st for every $f \in[H]$ and an ε-distingnisher C, there is an advice string $z \in[R]$ such that $c^{\prime}=\operatorname{Recon}^{C}(y, z)=f_{y}$ for all y
(NW appears to fit into this right? More an this later.)

Trevisan: $B B-P R G_{S}$ immediately yield extractors!
 be an $(\infty, r, \varepsilon)-B B P R G$. Then, the map

$$
\begin{aligned}
& \Gamma:[H] \times[L] \rightarrow[M] \\
& \Gamma:(f, y)=G^{f}(y)
\end{aligned}
$$

is an $(r+\log 1 / \varepsilon, 2 \varepsilon)$-extractor $\Leftrightarrow\left|\operatorname{List}_{\Gamma}(T, \mu(t)+\varepsilon)\right| \leqslant R$
Pf: $T \subseteq[M] \quad \operatorname{List}_{\Gamma}(T, \mu(T)+\varepsilon)=\left\{f_{0} P_{0}[\Gamma(f, y) \in T]>\mu+r\right\}$
\therefore If $f \in$ List, then T is an ε-distinguisher.

$$
\begin{aligned}
& \Rightarrow \exists z \in[R] \text { set } \operatorname{Recon}(0, z)=f \\
& \Rightarrow\left|\operatorname{List}_{\Gamma}(T, \mu(T)+\varepsilon)\right| \leqslant R
\end{aligned}
$$

Is the NW PRG a blackbox construction?

$$
f_{0}\{0,1\}^{k} \rightarrow\{0,1\} .
$$

$$
G^{f}:[D] \rightarrow[M]
$$

$$
G^{f}(y)=\left(f\left(\left.y\right|_{s_{1}}\right), ., f\left(\left.y\right|_{s_{m}}\right)\right)
$$

$S_{1}, \ldots S_{m}$ is a $(k, f \log m)-N W$ design. $S_{i} \leq[d]$ with $d=\frac{2 k^{2}}{\sqrt{1 / \log m}}$

Suppose $T:\{0,1\}^{m} \rightarrow\{0,1\}$ is an ε-distinguisher.

$$
\underbrace{\exists i \in[m] \gamma_{i,}, \ldots \gamma_{m}}_{\text {advice. }}: \operatorname{Pr}_{z_{1}-z_{i-1}}\left[\tilde{T}\left(z_{1,}, z_{i-1}\right)=z_{i}\right] \geqslant \frac{1}{2}+\frac{\varepsilon}{m}
$$

Building a circuit for $f(\cdot)$.

$$
\begin{aligned}
z_{j}=f\left(\left.\tilde{y}\right|_{s_{j}}\right) & \text { if } j<i \\
& =f^{(j)}\left(\left.y\right|_{s_{i} \cap s_{j}}\right)
\end{aligned} \begin{aligned}
& \text { for some boolean fr } \\
& f^{(j)}:\{0,1\}^{a} \rightarrow\left\{o_{1}\right\} \\
& a=\sqrt{l o g m} .
\end{aligned}
$$

Circuit for f :

$\Rightarrow \exists r^{\prime}$ and fins $f^{(1)} \cdots f^{(i-1)}:\{0,1\}^{q} \rightarrow\{0,1\}$ s.t

$$
\underbrace{\tau\left(f^{(1)}\left(\left.y\right|_{\left.s_{1}\right) s_{i}}\right), \ldots f^{(i-1)}\left(\left.y\right|_{\left.s_{i-1}\right) s_{i}}\right)\right)}_{c^{\prime}}=f(y) \quad \underset{y}{\text { oup.p }} \geq \frac{1}{2}+\frac{\varepsilon}{m}
$$

But C^{\prime} only computes f on $1 / 2+\delta$ locations...
Idea: Use an ECC on f.

$$
f:\{0,1\}_{2^{k}}^{\vec{k}}\{0,1\} \xrightarrow{E C C} g:\{0,1\}^{\tilde{k}^{\tilde{k}}} \underset{{ }^{\tilde{k}}}{\longrightarrow}\{0,1\}
$$

$\mid\left\{f_{0} E C C(f)\right.$ agrees with some $\left.g:\{0,1\}^{k^{2}} \rightarrow\{0,1\}\right\} \mid \leqslant$ Small. $^{\text {on }}$. on $\frac{1}{2}+\delta$ fraction.
Fact: There exists such, evpliat codes with $\tilde{k}=O(k+\log 1 / 8)$ and list size "small"" $\leq O\left(1 / \delta^{2}\right)$
Modified construction:

$$
\tilde{G}^{f}(y)=G^{\tilde{l}}(y) \text { where } \tilde{f}=\operatorname{ECC}(f) \text {. }
$$

$y \in[D]$ with $d=O\left((k+\log (1 / \delta))^{2} / f \log m\right)$
Advice for the Reconstruction:
NBP $\triangleright i \in[m]_{l-k}, r_{i},, \gamma_{m} \in\{0,1\}$

$$
\triangleright \bar{\gamma}^{\prime} \in\{0,1\}^{l-k}, \quad f^{(i)} \ldots f^{(i-1)}:\left\{0,1 s^{a} \rightarrow\{0,1\}\right.
$$

$\triangle A_{n}$ index within the decoded list of size $1 / \delta^{2}=(\mathrm{m} / \mathrm{2})^{2}$
Total advice length : $m^{1+\gamma}+O\left(\log \frac{m}{\varepsilon}+d\right)$
The: For any $r>0, \varepsilon>0$ and $l, m \in \mathbb{N}$, we have an [BB-PRG $(t, r, \varepsilon)-B B$ PRG construction $\widetilde{G}^{f}:[D] \rightarrow[M]$ analogue for every $f:\{0,1\}^{k} \rightarrow\{0,1\}$ with q $N \omega)$

$$
\begin{aligned}
& \triangleright d=O\left(\left(k+\log \frac{m}{2}\right)^{2} / \log m\right) \\
& \square t=\text { poly }(m, y \varepsilon) \\
& \square \text { Advice length } r=m^{1+r}+O\left(l+\log \frac{m}{\varepsilon}\right)
\end{aligned}
$$

Cor: For any $f, \varepsilon>0$ and $k \leq n \in \mathbb{N}$, the map
[Trerisan] $\Gamma_{0}[N] \times[D] \rightarrow[M]$

$$
\Gamma(f, y)=G^{\tilde{f}}(y)
$$

is a (k, ε)-extractor with $d=O\left(\left(\log \frac{n}{\varepsilon}\right)^{2} / \log k\right)$ and $m=k^{1-\gamma}$.
(Not the best choice of parameters, but a cool connection!)

Next: An exposition on 2-source extractors. \& connections to Ramsey graphs.

