Szemeredi's regularity lemmas "Any graph can be broken up
into a constant number of parts 3.4 most pairs
behave pseudorandomly".
EML'S For all
$$A,B \subseteq V$$

 $\left| \frac{E(A,B)}{IEI} - \mu(A) \mu(B) \right| \leq \lambda \cdot \sqrt{\mu(A)\mu(B)}$
 $d(s,T) = \frac{E(s,T)}{ISI-ITI}$ edge density.
If (E-regularity for a pair). (A,B) is said to be an E-reg
pair of subsets if $V \cup \subseteq A$, $W \subseteq B$ with $|U| \ge |A|$
and $|W| \ge c|B|$, we have
 $\left| d(A,B) - d(U,W) \right| \le \varepsilon$.

Defn: (E-regular partition) A partition
$$P: V(G_i) = V_1 \cup \dots \cup V_k$$

is an E-regular partition if
$$\sum_{\substack{(i,j):\\ (V_i,V_j) \text{ is not}\\ z-regular}} |V_i| |V_j| \leq E \cdot |V(G_i)|^2.$$

Thms (Szemeredi's Regularity Lemma) For any E>O, there is a constart M (dep. on E) such that any n-vertex graph has an E-reg. partition into < M parts. Imp: M does not dep an n. Very useful for any danse graph. $M \approx 2^{2^2} \sqrt{\frac{y_2 5}{y_2 5}}$

Applications:

▷ If XLYLIZ=V and all pairs are E-regular, with dry, drz, drz > 22. Then, the # XYZ-triangles $\geq (1-2\varepsilon)(d_{xy}-\varepsilon)(d_{yz}-\varepsilon)(d_{zx}-\varepsilon)|x|.|y|.|z|.$ CE 141 MA ZEIXI $\frac{1}{5} \approx 2^{2^{2}} \sqrt{\frac{1}{4}}$

Thom: (Rusza-Szemeredi) [Triangle Removal Lemma]. HE>O JS>O.
If G has ≤ S.n³ triangles, then there is some ≤ en²
edges removing which makes G triangle-free.
(If #Ss : o(n³) then we can make it S-free by removing o(h²) edges).

If A was 3-AP free,
$$\Rightarrow$$
 only trivial APs
 $\Rightarrow x+y+z = 0 \mod M$.
 $\Rightarrow every edge is in exactly one triagle.$
 $\delta_0 |E| = o(M^2) = o(N^2) = O(IAI.M)$
 $\Rightarrow |A| = o(N)$
 a .
 $\delta_0 Any set g constant density in [N] has a 3-AP in it.
For k=4 (and higher):
 $\Rightarrow Work = i = it a - i = cantite - 2-24 i = 5-24 i$$

P Weighted version :
$$\forall N > N_0(E,C)$$
 $\forall S > 0 = C > 0$ so that any $f: \mathbb{Z}_N \to [0,1]$ with $E[f] > S$
satisfies. $F[f(x), f(x+d), f(x+2d)] \ge C$.

$$N. exp(-c\sqrt{log}N) \leq 3AP-free subset \leq C. (loglog N)^{4}$$
 N.
 $g [N]$ $\log N$.

Sparse Triangle Removal Lemma: [lonlon-Fox Zhao]
$$p \cdot p(n)$$

 $\forall E > 0 \quad \exists S > 0 \quad s.t \quad if \ \ is \ a \ \ 'sufficiently pseudorado''
host graph with edge density p , and G is a subgraph
 $\mathcal{P}[r]$, then if G has $\leq Sn^3p^3$ triangles, then
they can all be removed using $\leq E.n^2p$ edges.$

