
CSS.413.1 Pseudorandomness 8 Nov, 2021

Problem Set 3

• Due Date: 22 Nov 2021

• The points for each problem is indicated on the side. This problem set has 60 points but you
may solve any 45 points worth of questions among these for a full score (the remaining 15
points are bonus). Any additional points obtained will still count towards your final aggregate.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) on Acadly.

• Collaboration is encouraged, but all writeups must be done individually and must include
names of all collaborators.

• Referring to sources other than the text book and class notes is strongly discouraged. But if
you do use an external source (eg., other text books, lecture notes, or any material available
online), ACKNOWLEDGE all your sources in your writeup, with a brief remark on why you
sought that source. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

• Be clear in your writing.

1. [Cryptographic PRGs] (2 + 3 + 7 + 8)

In the cryptographic setting, we often consider PRGs of the form G : {0, 1}s → {0, 1}2s (for
example) for the class of all poly(s)-sized circuit with ε = 1/sω(1), even while assuming that
the function G itself is polynomial time computable! That is, G is an efficient PRG that is
secure against potentially more powerful adversaries than needed to compute G.

We’ll refer to such PRGs as cryptographically secure PRGs.

(a) A PRG G : {0, 1}s → {0, 1}m is said to be a seed-revealable PRG if even G′ given by
G′(s) = (s,G(s)) is a PRG. That is, G remains a PRG even if the seed s is “revealed”.

Show that there cannot be any cryptographically secure PRG that is also seed-revealable.

Sharp eyes! Actually, such PRGs are often called “strong PRGs” but we chose a different name because we didn’t want to say

“cryptographically secure PRGs cannot be strong” because they demonstrably are!

(b) If G : {0, 1}s → {0, 1}m is a cryptographically secure PRG, then prove that G′ :

{0, 1}`+s → {0, 1}`+m given by G(s1, s2) = s1 · G(s2) (where s1 ∈ {0, 1}`) is also a
cryptographically secure PRG.

(c) If G : {0, 1}s → {0, 1}2s is a cryptographically secure PRG, show that the function

H : {0, 1}s → {0, 1}3s given by H(s) = x ·u · v where G(s) = x · y and G(y) = u · v is also
cryptographically secure.

What about H ′ : {0, 1}s → {0, 1}4s given by H ′(s) = x · y · u · v? Is it a PRG as well?
Justify your answer.

(d) Suppose G : {0, 1}s → {0, 1}2s is a cryptographically secure PRG. Here are two candidate

cryptographically secure PRGs of the form {0, 1}s → {0, 1}3s:

H1(s) := (x⊕ y) · u · v
H2(s) := x · (y ⊕ u) · v
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where G(s) = x · y and G(y) = u · v.

Turns out, one of the above two candidates is provably always a cryptographically secure
PRG (that is, Hb is cryptographically secure PRG whenever G is cryptographically se-
cure), and the other is not (that is, there is a cryptographically secure G for which Hb′

is provably NOT secure). Find out which is which, and justify your answer with either a
proof or a distinguisher.

[Hint:Tryandusesomeofthepreviouspartsofthisquestion.Itmighthelpto
keepinmindthatforanyfixedy,thedistributionofr⊕yisuniformifrischosen
uniformlyatrandom.]

2. [PRGs for 2-step communication c protocols using hash functions] (2 + 3 + 5 + 5)

Let Σ = {0, 1}n and H = {h : Σ→ Σ} be a pairwise independent hash family. In this question,
you will show that for every A,B ⊆ Σ we have

Pr
h∈H

[∣∣∣∣ Pr
x∈Σ

[x ∈ A , h(x) ∈ B]− µ(A)µ(B)

∣∣∣∣ ≥ ε] ≤ 1

ε2|Σ|
, (1)

where µ(A), µ(B) refers to |A||Σ| and |B||Σ| respectively.

(a) For any x ∈ A, let Ix = 1h(x)∈B , the indicator random variable for whether h(x) ∈ B.
Let Y =

∑
x∈A Ix.

Show that 1
|Σ| · E [Y ] = µ(A)µ(B).

(b) Show that Var(Y ) ≤ E[Y ].

(c) Show that Pr
[∣∣∣ 1
|Σ| · Y − αβ

∣∣∣ > ε
]
≤ αβ

ε2|Σ| , and conclude (1).

(d) By suitably instantiating ε in the above part, infer from the above that the following
map:

G : (x, h) 7→ (x, h(x))

is an ε-PRG for 2-step communication-c algorithms for any constant ε > 0 and c =
O(log n).

3. [Basic properties of the matrix max-norm] (7)

In class, we used the following norm on matrices:

‖M‖ := max
i∈[n]

∑
j∈[m]

|Mi,j |

 ,

if M is an n×m matrix.

Prove that ‖A+B‖ ≤ ‖A‖+ ‖B‖ and ‖AB‖ ≤ ‖A‖ · ‖B‖.

4. [Explicit constructions of combinatorial designs] (8)

Let us assume that k, ` are powers of 2, with k ≤ `2. Let F be the finite field of size `/k and
let S be a set of k distinct elements from F. For any a ≤ k, define the following family of sets

D = {Tp : p ∈ F[x] , deg(p) < a}

where Tp = {(a, p(a)) : a ∈ S}.
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That is, there is a set Tp for every univariate polynomial p(x) ∈ F[x] of degree at most a,
where the set is the “graph” of the polynomial.

Show that the D is an (`, a)-combinatorial design of size
(
`
k

)a
. That is, D is a collection of(

`
k

)a
sets of size exactly k whose pairwise intersection of size less than a.

5. [PRGs imply hard functions] (10)

Suppose that for every m, there exists a mildly explicit 1
m -PRG Gm : {0, 1}d(m) → {0, 1}m

against size-m circuits.

Show that there is a function f` : {0, 1}` → {0, 1} that is computable in time 2O(`) that cannot
be computed by circuits of size t(`) = Ω(d−1(` − 1)). In particular, if d(m) = logm, then we
have a 2Ω(`) lower bound for f`.

[Hint:Considerthefunctionthatchecksifthereisay∈{0,1}
d(m)

suchthatGm(y)
beginswith1011001.]
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