Today

- Adminstriva
- Introductron

4 test cases
css. 318.1
Coding Theory
Lecture 1 (2022-8-29)
Inotructor: Prahladh
Harsha.

Administervia:
GradingPalicy: Y problem bets - 80%
Progect / Paper Presentation - 20% Sinal Eram

Koding Theory
Errore Correctrong Codes

- Srammon (1948)
- Hamming (1950)

Toy Examples:
Example 1: Gucosing Flotr Game
Example 2: Hamming's Problem

- Storce n bits
- Correcotions happen Gut rearely.

(2) Recorexy

Example 2a Dato Centers

$$
\infty \text { bots }
$$

$\leqslant l$ - local correcy hoon
$\leqslant g$ - global conscyptions $l \gg g$
Example 3: Searet Sharing.
n - parties.

- Share a secret among in people.
- E or more people should le able to recover secret using then shore - (t-1) ar less - cannot recover

$$
(-1)_{v o} t \cdot S S
$$

Example 4: Pol testing
$n=384$ health workers
48 tests
detected 4 positive among 884

Return to Hamming: Problem
$n=63 ; t=1$
$11_{1}^{1 / 2}$

- Stone 63 bros
- Almost one corruphon
$\left.\begin{array}{l}0 \rightarrow 1 \\ 1 \rightarrow 0\end{array}\right] \begin{aligned} & \text { but don't know } \\ & \text { location of correction }\end{aligned}$
location of corrception.

Qu: What is the max $\#$ of strings that can be stored on device such that it can be recovered?

Solon 1: Repeat each bit 3 trines

(i) Encoding Decoding - simple. Store 21 "message" Gits in as bits

$$
\text { Rate }=\frac{\text { message length }}{\text { block length }}=\frac{21}{63}=\frac{1}{3}
$$

Ln: Can one do better than 1/3.?

Qu: Can one do even butter?

Sols $3^{*}:$
Starters scale down $n=63$ to $n=7$ yet. $\quad t=$?

Surprising Observations:

1. $\forall m_{1} \neq m_{2} \in\{0, r\}^{4}, G_{m_{1}}=G_{m_{2}}$ differ in at least 3 locations [will prove later]
2. $y \in\{0,1\}^{7}$

Suppose y is cm for some $m \in\{a,]^{\}}$
 $=c \in[4]$
then Hl $=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \quad$ Magrally $b_{1} G_{2} b_{3}=0, \Rightarrow n o$ errors else $6,6,6,3$ - under of the correcpled bit
[coll prove later]

$$
\text { Pate }=4 / \pi
$$

To extend to 63. naively just repeat

$$
\text { Rate }=4 / 7
$$

Sols 3. [framing Sols].
Constructed 2 matrices

-Properties Lwill prove later]

1. 甘 $m_{1} \neq m_{2} \in\{0,1\}^{57}, \sigma_{m}=\sigma_{2}$ differ in $\geqslant 3$ locator

Hl- index of the corrupted bit.

- Rate $=\frac{57}{63}$
[taming] Cannot do any Getter.

Harming:
(1) Constructed a Code
(2) Limitations of any code that has property
(3) Efficient Decoding Alg.
(4) Relates to the hats problem $\begin{aligned} & \text { Brood } \\ & \text { Dutfire } \\ & \text { of } \\ & \text { The rest } \\ & \text { Q he } \\ & \text { course }\end{aligned}$

