Today

- Coding Bounds
* Singleton
* Poler
* Erras-Barsaryo
css .318.1
Coding Theory Lecture 5 (2022-9-14)
Instructor: Prahladh Marsha.

Lets recap:
What we can do
GV bound: If n, d are any passive integers thin $\exists(n, \beta, \alpha)-\operatorname{code} C$ at

$$
\begin{aligned}
& 2^{k} \geq \frac{2^{n}}{\left|v \alpha_{2}(n, d-\theta)\right|} \\
& \text { re, } \quad R \geqslant 1-r_{2}(\delta)
\end{aligned}
$$

What we cannot do:
Framing bound: \mathbb{H} Cis a (Gi, e_{1}, d_{2}-code then

Singleton Bound: $\forall(n, t, d)$-code, we have

$$
k+d \leq n+1
$$

A? ρ is (nib,d)-code $\quad \rho \leq \sum_{k}^{n},|\Sigma|=q$
Pregection: $\sum^{n} \xrightarrow{\pi} \sum^{k-1}$ Cboumed by deropong all of the frost $n-k+1$ symbols).
By PAP, J $c_{1} \neq c_{L} \in C$, st $\pi\left(C_{1}\right)=\pi\left(c_{2}\right)$

$$
\Delta\left(c_{1}, \varepsilon\right) \leq n-k_{+} 1
$$

Hence, $d \leq n-k+1$
In the asymptotic notation. $R+\delta \leq 1+o(i)$.
Hor every died alphabet 9 , Singleton bd is worse than Hamming bd.
But suepprisingfy, will construct codes which meet Singleton bol Colbert aver a growing alphabet

Portion Bound: C_{1} (n, b, d) -code.

1. $d>\frac{n}{2} \Rightarrow|e| \leqslant n+1$
2. For any $d, \quad|e| \leqslant 2 d \cdot 2^{n-2 d+1}$.

In the asymptotic notation $2^{t} \leq 2^{n-2 d+2+\log _{2} d}$

$$
\text { Re, } \quad R \leq 1-2 \delta+0(1)
$$

Proof of Potion Bod.
(2) Cabsuming (1))
 where $l=n-201+1$

For every $a \in\{0,1\}^{l}, \sum_{a}=\{x \in e / x=$ ag for some $\left.y \in 20,1]^{20.1}\right]$
Gs: $\Delta\left(C_{\infty}\right) \geqslant \alpha$, $\forall a$
Hence by (i), $\quad \mathrm{Col}_{\mathrm{l}} \mid \leq 2 d-1+1=2 d$.
$|C|=\sum_{a}\left|C_{a}\right| \leqslant 2^{l} \cdot 2 d \quad$ Lend of poet (2))
(1) Proof of part (1).
(re, $d>n / 2 \Rightarrow|c| \leq n+1)$.
Geometire Technique: Hamming \rightarrow Euclid.

$$
\begin{array}{ll}
\{0,1\} & \longrightarrow \mathbb{R} \\
6 & \mapsto(-1)^{6}=\tilde{6}
\end{array}
$$

$$
k, \quad\left\{\begin{array}{lll}
0 & \mapsto & 1 \\
1 & \mapsto & -1
\end{array}\right.
$$

Extend $\quad\{0,1\}^{n} \rightarrow \mathbb{R}^{7}$

$$
\left(x_{1} \ldots x_{n}\right) \longleftrightarrow\left(\tilde{x}_{1}, \tilde{x}_{1}, \ldots \tilde{x}_{n}\right)
$$

Fact: $\Delta(x, y)=d$, ff $\langle\tilde{x}, \tilde{y}\rangle=n-2 d$.
(fight: vertices of a simplex in no dim).

Geometric Lemma: If $F_{1} \ldots r_{m} \in \mathbb{R}^{n}$ sit $\forall c \neq\left\langle z_{i}, \zeta\right\rangle<0$, then $m \leq n+1$

$$
\begin{aligned}
& \Leftrightarrow \sum \tilde{x}_{y_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta(e)>n / 2 \\
& \forall e \neq j\langle\tilde{\varepsilon}, \tilde{j}\rangle<0 \\
& \forall c,\langle\bar{\varepsilon}, \tilde{\varepsilon}\rangle=n \\
& |\tilde{e}| \leqslant n+1
\end{aligned}
$$

Pf: Assume othercurse

$$
\text { re, } \exists \quad z_{1}, z_{2}, \ldots \quad z_{n+2} \in \mathbb{R}^{2} \text {, st }\left\langle z_{1}, z_{1}\right\rangle<0
$$

$z_{1}, \ldots z_{n+1} \in \mathbb{R}^{n}$ and hence linearly dependent re, $\sum_{i=1}^{n+1} \lambda_{i} z_{i}=0$ for some $\left(\lambda_{1} \ldots \lambda_{n+1}\right) \neq 0^{n+1}$ clog. assume $\exists \quad 0<l \leq t \leq o+1$

$$
\begin{equation*}
z:=\sum_{c=1}^{l} \alpha_{i} \cdot z_{i}=\sum_{j=l_{i+1}}^{t} \beta_{j} z_{j} . \tag{c}
\end{equation*}
$$

Case(i) $l<t$

$$
0 \leqslant\langle z, z\rangle=\sum_{c=1}^{l} \sum_{j=c+1}^{t} \alpha_{i} \beta_{j}\left\langle z_{i}, z_{j}\right\rangle<0 \Rightarrow \Leftarrow
$$

Cabe(ii) $l=t \quad z=0$

$$
0=\left\langle z_{n+2}, z\right\rangle=\sum_{i=1}^{\ell} \alpha_{c}\left\langle z_{n+2}, z_{i}\right\rangle<0 \quad \Rightarrow \Leftarrow
$$

An: Is there a "nice" bd that performs as well as Portion a Hamming.
Ans: Yes, Elias. Bassalygo bound.
Elias Bassalygo Bound.

$$
\begin{aligned}
& 1 C l \log _{2}(n, r n) \leqslant \angle \cdot 2^{n} \\
& K+K_{2}(r)_{n} \leqslant 1+\log _{2} \angle \\
& R+K_{2}(r) \leqslant 1+\frac{\log _{n}}{n} L
\end{aligned}
$$

Obs: As long as $L=2^{(n)}$, at get R+ $h_{2}(r) \leqslant 1+a(1)$.
\rightarrow List-decoding Las apposed to unique decoding).
Johnson Radius: $\delta \in(0,1 / 2)$
$\forall \operatorname{codes} e \quad \ln , k, \delta)_{2}$-code.

$$
(1-x)^{1 / 2} \leqslant 1-\frac{x}{2}
$$

$$
\left.\begin{aligned}
& J_{2}(\delta)=\frac{1}{2}(1-\sqrt{1-2 \delta}) \\
& H \in \in e, \quad \mid B a l\left(C c_{1} J_{2}(\delta) m\right) \cap C /
\end{aligned} \right\rvert\, \begin{aligned}
& \sqrt{1-28} \leqslant 1-8 \\
& \frac{1}{2}(1-\sqrt{1-2 \delta}) \geqslant \delta / 2
\end{aligned}
$$

Cor: $E B$ bound

$$
R+\alpha_{2}\left(J_{2}(8)\right) \leqslant 1+0(1) .
$$

By design, EB is latter than Hamming

By convexity, $E B$ is better than plottin.

$$
\begin{aligned}
& \delta \rightarrow 0 . \\
& J_{2}(\delta) \rightarrow \delta / 2 \\
& R \leqslant 1-R(S / 2) \\
& P_{2}\left(\frac{1}{2}-\alpha\right)=1-\theta\left(\alpha^{2}\right) \text { or smoll } \\
& =1-\frac{8}{2} \log \frac{1}{8}(E-B) \\
& R=O(\varepsilon)(E B 6 d)
\end{aligned}
$$

Achievability:

$$
\begin{aligned}
& \text { GV: } R \geqslant 1-R_{2}(\delta) \text { which corrcof GV: } R \geqslant 1 \beta_{2}(\delta) \\
& J C, \quad R \geqslant 1-\delta \log \frac{1}{\delta} t \quad J C, R=\Omega\left(\varepsilon^{2}\right) \\
& \angle P-G \text { ound }(M R P N) \\
& R=O\left(\varepsilon^{2} \log \frac{1}{\varepsilon}\right)
\end{aligned}
$$

